
django-crispy-forms Documentation
Release 2.0

Miguel Araujo

Jun 30, 2023

CONTENTS

1 User Guide 3
1.1 Installation . 3
1.2 crispy filter . 4
1.3 {% crispy %} tag with forms . 5
1.4 FormHelper . 12
1.5 Layouts . 16
1.6 How to create your own template packs . 25
1.7 {% crispy %} tag with formsets . 27
1.8 Updating layouts on the go . 30
1.9 Frequently Asked Questions . 36

2 API documentation 39
2.1 API helpers . 39
2.2 API Layout . 40
2.3 API templatetags . 52
2.4 API Bootstrap . 56

3 Developer Guide 71
3.1 Contributing . 71

Python Module Index 75

Index 77

i

ii

django-crispy-forms Documentation, Release 2.0

django-crispy-forms provides you with a |crispy filter and {% crispy %} tag that will let you control the rendering
behavior of your Django forms in a very elegant and DRY way. Have full control without writing custom form templates.
All this without breaking the standard way of doing things in Django, so it plays nice with any other form application.

CONTENTS 1

https://djangoproject.com
https://djangoproject.com

django-crispy-forms Documentation, Release 2.0

2 CONTENTS

CHAPTER

ONE

USER GUIDE

Get the most out of django-crispy-forms

1.1 Installation

1.1.1 Installing django-crispy-forms

Install latest stable version into your python environment using pip:

pip install django-crispy-forms

If you want to install development version (unstable), you can do so doing:

pip install git+git://github.com/django-crispy-forms/django-crispy-forms.git@main
→˓#egg=django-crispy-forms

Or, if you’d like to install the development version as a git repository (so you can git pull updates), use the -e flag
with pip install, like so:

pip install -e git+git://github.com/django-crispy-forms/django-crispy-forms.git@main
→˓#egg=django-crispy-forms

Once installed add crispy_forms to your INSTALLED_APPS in settings.py:

INSTALLED_APPS = (
...
'crispy_forms',

)

In production environments, always activate Django template cache loader. This is available since Django 1.2 and what
it does is basically load templates once, then cache the result for every subsequent render. This leads to a significant
performance improvement. To see how to set it up refer to the fabulous Django docs page.

3

https://docs.djangoproject.com/en/2.2/ref/templates/api/#django.template.loaders.cached.Loader

django-crispy-forms Documentation, Release 2.0

1.1.2 Template packs

Since version 2.0, django-crispy-forms template packs are now in separate packages.

You will need to install the appropriate template pack for your CSS framework and add it to your list of
INSTALLED_APPS. The the following template packs have been extracted from crispy-forms core are now available
on PyPI.

• Bootstrap2 crispy-forms-bootstrap2.

• Bootstrap3 crispy-bootstrap3.

• Bootstrap4 crispy-bootstrap4.

Version v1.x also provided template packs for:

• uni-form Uni-form is a nice looking, well structured, highly customizable, accessible and usable forms.

In addition the following template packs are available through separately maintained projects.

• foundation Foundation In the creator’s words, “The most advanced responsive front-end framework in the
world.” This template pack is available through crispy-forms-foundation

• tailwind Tailwind A utility first framework. This template pack is available through crispy-tailwind

• Bootstrap 5 Support for newer versions of Bootstrap will be in separate template packs. This starts with version
5 and is available through crispy-bootstrap5

• Bulma Bulma: the modern CSS framework that just works. This template pack is available through crispy-bulma

If your form CSS framework is not supported and it’s open source, you can create a
crispy-forms-templatePackName project. Please let me know, so I can link to it. Documentation on How
to create your own template packs is provided.

You can set your default template pack for your project using the CRISPY_TEMPLATE_PACK Django settings variable:

CRISPY_TEMPLATE_PACK = 'uni_form'

Please check the documentation of your template pack package for the correct value of the CRISPY_TEMPLATE_PACK
setting (there are packages which provide more than one template pack).

1.1.3 Setting static files

crispy-forms does not include static files. You will need to include the proper corresponding static files yourself de-
pending on what CSS framework (Template pack) you are using. This might involve one or more CSS and JS files.
Read CSS framework’s docs for help on how to set it up.

1.2 crispy filter

Crispy filter lets you render a form or formset using django-crispy-forms elegantly div based fields. Let’s see a usage
example:

{% load crispy_forms_tags %}

<form method="post" class="my-class">
{{ my_formset|crispy }}

</form>

4 Chapter 1. User Guide

https://pypi.org/project/crispy-forms-bootstrap2/
https://pypi.org/project/crispy-bootstrap3/
https://pypi.org/project/crispy-bootstrap4/
https://github.com/draganbabic/uni-form/tree/uni-form-v-1-5
https://get.foundation
https://github.com/sveetch/crispy-forms-foundation
https://tailwindcss.com
https://github.com/django-crispy-forms/crispy-tailwind
https://github.com/django-crispy-forms/crispy-bootstrap5
https://bulma.io
https://github.com/ckrybus/crispy-bulma

django-crispy-forms Documentation, Release 2.0

1. Add {% load crispy_forms_tags %} to the template.

2. Append the |crispy filter to your form or formset context variable.

3. Refresh and enjoy!

1.2.1 Using {% crispy %} tag because it rocks

As handy as the |crispy filter is, think of it as the built-in methods: as_table, as_ul and as_p. You cannot tune up
the output. The best way to make your forms crisp is using the {% crispy %} tag with forms. It will change how you
do forms in Django.

1.3 {% crispy %} tag with forms

django-crispy-forms implements a class called FormHelper that defines the form rendering behavior. Helpers give
you a way to control form attributes and its layout, doing this in a programmatic way using Python. This way you write
as little HTML as possible, and all your logic stays in the forms and views files.

1.3.1 Fundamentals

For the rest of this document we will use the following example form for showing how to use a helper. This form is in
charge of gathering some user information:

class ExampleForm(forms.Form):
like_website = forms.TypedChoiceField(

label = "Do you like this website?",
choices = ((1, "Yes"), (0, "No")),
coerce = lambda x: bool(int(x)),
widget = forms.RadioSelect,
initial = '1',
required = True,

)

favorite_food = forms.CharField(
label = "What is your favorite food?",
max_length = 80,
required = True,

)

favorite_color = forms.CharField(
label = "What is your favorite color?",
max_length = 80,
required = True,

)

favorite_number = forms.IntegerField(
label = "Favorite number",
required = False,

)

notes = forms.CharField(
(continues on next page)

1.3. {% crispy %} tag with forms 5

django-crispy-forms Documentation, Release 2.0

(continued from previous page)

label = "Additional notes or feedback",
required = False,

)

Let’s see how helpers work step by step, with some examples explained. First you will need to import FormHelper:

from crispy_forms.helper import FormHelper

Your helper can be a class level variable or an instance level variable, if you don’t know what this means you might
want to read the article “Be careful how you use static variables in forms”. As a rule of thumb, if you are not going
to manipulate a FormHelper in your code, like in a view, you should be using a static helper, otherwise you should be
using an instance level helper. If you still don’t understand the subtle differences between both, use an instance level
helper, because you won’t end up suffering side effects. As in the next steps I will show you how to manipulate the
form helper, so we will create an instance level helper. This is how you would do it:

from crispy_forms.helper import FormHelper

class ExampleForm(forms.Form):
[...]
def __init__(self, *args, **kwargs):

super().__init__(*args, **kwargs)
self.helper = FormHelper()

As you can see you need to call the base class constructor using super and override the constructor. This helper doesn’t
set any form attributes, so it’s useless. Let’s see how to set up some basic FormHelper attributes:

from crispy_forms.helper import FormHelper
from crispy_forms.layout import Submit

class ExampleForm(forms.Form):
[...]
def __init__(self, *args, **kwargs):

super().__init__(*args, **kwargs)
self.helper = FormHelper()
self.helper.form_id = 'id-exampleForm'
self.helper.form_class = 'blueForms'
self.helper.form_method = 'post'
self.helper.form_action = 'submit_survey'

self.helper.add_input(Submit('submit', 'Submit'))

Note that we are importing a class called Submit that is a layout object. We will see what layout objects are in detail
later on, for now on let’s just say that this adds a submit button to our form, so people can send their survey.

We’ve also done some helper magic. FormHelper has a list of attributes that can be set, that affect mainly form
attributes. Our form will have as DOM id id-exampleForm, it will have as DOM CSS class blueForms, it will use
http POST to send information and its action will be set to reverse(submit_survey).

Let’s see how to render the form in a template. Supposing we have the form in the template context as example_form,
we would render it doing:

{% load crispy_forms_tags %}
{% crispy example_form example_form.helper %}

6 Chapter 1. User Guide

https://tothinkornottothink.com/post/7157151391/be-careful-how-you-use-static-variables-in-forms

django-crispy-forms Documentation, Release 2.0

Notice that the {% crispy %} tags expects two parameters: first the form variable and then the helper. In this case we
use the FormHelper attached to the form, but you could also create a FormHelper instance and pass it as a context
variable. Most of the time, you will want to use the helper attached. Note that if you name your FormHelper attribute
helper you will only need to do:

{% crispy form %}

With the default Bootstrap 4 template pack, this is exactly the html that you would get:

<form action="submit_survey" class="blueForms" id="id-exampleForm" method="post">
<input name="csrfmiddlewaretoken" type="hidden" value=

→˓"evU93ufHyzX5dP5h5hgOaq96zIj8c02X">
<div id="div_id_like_website" class="form-group">

<label class="requiredField"> Do you like this website?<span class="asteriskField
→˓">* </label>

<div action="submit_survey" class="blueForms" id="id-exampleForm">
<div class="custom-control custom-radio">

<input type="radio" class="custom-control-input" name="like_website"␣
→˓value="1" id="id_like_website_0" required checked /> <label class="custom-control-label
→˓" for="id_like_website_0"> Yes </label>

</div>
<div class="custom-control custom-radio">

<input type="radio" class="custom-control-input" name="like_website"␣
→˓value="0" id="id_like_website_1" required /> <label class="custom-control-label" for=
→˓"id_like_website_1"> No </label>

</div>
</div>

</div>
<div id="div_id_favorite_food" class="form-group">

<label for="id_favorite_food" class="requiredField"> What is your favorite food?
→˓* </label>

<div><input type="text" name="favorite_food" maxlength="80" class="textinput␣
→˓inputtext form-control" required id="id_favorite_food" /></div>

</div>
<div id="div_id_favorite_color" class="form-group">

<label for="id_favorite_color" class="requiredField"> What is your favorite␣
→˓color?* </label>

<div><input type="text" name="favorite_color" maxlength="80" class="textinput␣
→˓inputtext form-control" required id="id_favorite_color" /></div>

</div>
<div id="div_id_favorite_number" class="form-group">

<label for="id_favorite_number" class=""> Favorite number </label>
<div><input type="number" name="favorite_number" class="numberinput form-control

→˓" id="id_favorite_number" /></div>
</div>
<div id="div_id_notes" class="form-group">

<label for="id_notes" class=""> Additional notes or feedback </label>
<div><input type="text" name="notes" class="textinput inputtext form-control" id=

→˓"id_notes" /></div>
</div>
<div class="form-group">

<div class=""><input type="submit" name="submit" value="Submit" class="btn btn-
→˓primary" id="submit-id-submit" /></div>

</div>
(continues on next page)

1.3. {% crispy %} tag with forms 7

django-crispy-forms Documentation, Release 2.0

(continued from previous page)

</form>

What you’ll get is the form rendered as HTML with awesome bits. Specifically. . .

• Opening and closing form tags, with id, class, action and method set as in the helper:

<form action="submit_survey" class="blueForms" id="id-exampleForm" method="post">
[...]

</form>

• Django’s CSRF controls:

<input name="csrfmiddlewaretoken" type="hidden" value=
→˓"evU93ufHyzX5dP5h5hgOaq96zIj8c02X">

• Submit button:

<div class="form-group">
<div class=""><input type="submit" name="submit" value="Submit" class="btn btn-

→˓primary" id="submit-id-submit" /></div>
</div>

1.3.2 Manipulating a helper in a view

Let’s see how we could change any helper property in a view:

@login_required()
def inbox(request, template_name):

example_form = ExampleForm()
redirect_url = request.GET.get('next')

Form handling logic
[...]

if redirect_url is not None:
example_form.helper.form_action = reverse('submit_survey') + '?next=' +␣

→˓redirectUrl

return render_to_response(template_name, {'example_form': example_form}, context_
→˓instance=RequestContext(request))

We are changing form_action helper property in case the view was called with a next GET parameter.

8 Chapter 1. User Guide

django-crispy-forms Documentation, Release 2.0

1.3.3 Rendering several forms with helpers

Often we get asked: “How do you render two or more forms, with their respective helpers, using {% crispy %} tag,
without having <form> tags rendered twice?” Easy, you need to set form_tag helper property to False in every helper:

self.helper.form_tag = False

Then you will have to write a little of html code surrounding the forms:

<form action="{% url 'submit_survey' %}" class="my-class" method="post">
{% crispy first_form %}
{% crispy second_form %}

</form>

You can read a list of Helper attributes you can set and what they are for.

1.3.4 Change ‘*’ required fields

If you don’t like the use of * (asterisk) to denote required fields you have two options:

• Asterisks have an asteriskField class set. So you can hide it using CSS rule:

.asteriskField {
display: none;

}

• Override field.html template with a custom one.

1.3.5 Make crispy-forms fail loud

By default when crispy-forms encounters errors, it fails silently, logs them and continues working if possible. A settings
variable called CRISPY_FAIL_SILENTLY has been added so that you can control this behavior. If you want to raise
exceptions instead of logging, telling you what’s going on when you are developing in debug mode, you can set it to:

CRISPY_FAIL_SILENTLY = not DEBUG

1.3.6 Change crispy-forms <input> default classes

Django fields generate default classes, crispy-forms handles these and adds other classes for compatibility with CSS
frameworks.

For example a CharField generates an <input class="textinput" But in uni form we need the class to be
textInput (with capital ‘I’), so crispy-forms leaves it like <input class="textinput textInput".... All offi-
cial template packs are handled automatically, but maybe you are integrating a new CSS framework, or your company’s
custom one, with crispy-forms and need to change the default conversions. For this you need to use a settings variable
called CRISPY_CLASS_CONVERTERS, expected to be a Python dictionary:

CRISPY_CLASS_CONVERTERS = {'textinput': "textinput inputtext"}

For example this setting would generate <input class"textinput inputtext" The key of the dictionary
textinput is the Django’s default class, the value is what you want it to be substituted with, in this case we are keeping
textinput.

1.3. {% crispy %} tag with forms 9

django-crispy-forms Documentation, Release 2.0

1.3.7 Render a form within Python code

Sometimes, it might be useful to render a form using crispy-forms within Python code, like a Django view, for
that there is a nice helper render_crispy_form. The prototype of the method is render_crispy_form(form,
helper=None, context=None). You can use it like this. Remember to pass your CSRF token to the helper method
using the context dictionary if you want the rendered form to be able to submit.

1.3.8 AJAX validation recipe

You may wish to validate a crispy-form through AJAX to re-render any resulting form errors. One way to do this is to
set up a view that validates the form and renders its html using render_crispy_form. This html is then returned to
the client AJAX request. Let’s see an example.

Our server side code could be:

from django.template.context_processors import csrf
from crispy_forms.utils import render_crispy_form

@json_view
def save_example_form(request):

form = ExampleForm(request.POST or None)
if form.is_valid():

You could actually save through AJAX and return a success code here
form.save()
return {'success': True}

ctx = {}
ctx.update(csrf(request))
form_html = render_crispy_form(form, context=ctx)
return {'success': False, 'form_html': form_html}

I’m using a jsonview decorator from django-jsonview.

Note that you have to provide render_crispy_form the necessary CSRF token, otherwise it will not work.

In our client side using jQuery would look like:

var example_form = '#example-form';

$.ajax({
url: "{% url 'save_example_form' %}",
type: "POST",
data: $(example_form).serialize(),
success: function(data) {

if (!(data['success'])) {
// Here we replace the form, for the
$(example_form).replaceWith(data['form_html']);

}
else {

// Here you can show the user a success message or do whatever you need
$(example_form).find('.success-message').show();

}
},

(continues on next page)

10 Chapter 1. User Guide

https://github.com/jsocol/django-jsonview

django-crispy-forms Documentation, Release 2.0

(continued from previous page)

error: function () {
$(example_form).find('.error-message').show()

}
});

Warning: When replacing form html, you need to bind events using live or on jQuery method.

1.3.9 Bootstrap horizontal forms

The way you do horizontal forms in Bootstrap version 3 is setting some col-lg-X classes in labels and divs wrapping
fields. This would mean a lot of hassle updating your layout objects for settings these classes, too much verbosity.
Instead some FormHelper attributes have been added to help you easily achieve this. You will need to set only three
attributes:

helper.form_class = 'form-horizontal'
helper.label_class = 'col-lg-2'
helper.field_class = 'col-lg-8'
helper.layout = Layout(

'email',
'password',
'remember_me',
StrictButton('Sign in', css_class='btn-default'),

)

Of course you can set your widths as you like, it doesn’t have to be exactly like this.

1.3.10 Bootstrap inline forms

The way you do inline forms in Bootstrap version 3 is:

helper.form_class = 'form-inline'
helper.field_template = 'bootstrap3/layout/inline_field.html'
helper.layout = Layout(

'email',
(continues on next page)

1.3. {% crispy %} tag with forms 11

django-crispy-forms Documentation, Release 2.0

(continued from previous page)

'password',
'remember_me',
StrictButton('Sign in', css_class='btn-default'),

)

Note: The form-inline class needs to be added to the form’s <form> tag. Therefore let crispy-forms render the <form>
tag or add the form-inline class manually to the <form> tag in your template.

If you need to set attributes in a field, you have to use InlineField instead of Field:

from crispy_forms.bootstrap import InlineField

helper.layout = Layout(
InlineField('email', readonly=True),
'password',
[...]

)

1.4 FormHelper

What is a FormHelper and how to use it, is thoroughly explained in a previous section {% crispy %} tag with forms.

1.4.1 FormHelper with a form attached (Default layout)

Since version 1.2.0 FormHelper optionally can be passed an instance of a form. You would do it this way:

from crispy_forms.helper import FormHelper

class ExampleForm(forms.Form):
def __init__(self, *args, **kwargs):

super().__init__(*args, **kwargs)
self.helper = FormHelper(self)

When you do this crispy-forms builds a default layout using form.fields for you, so you don’t have to manually list
them all if your form is huge. If you later need to manipulate some bits of a big layout, using dynamic layouts is highly
recommended, check Updating layouts on the go.

Also, now the helper is able to cross match the layout with the form instance, being able to search by widget type if you
are using dynamic API.

1.4.2 Helper attributes you can set

template_pack
Allows you to set what template pack you want to use at FormHelper level. This is useful for example when
a website needs to render different styling forms for different use cases, like desktop website vs smartphone
website.

template
When set allows you to render a form/formset using a custom template. Default template is at {{
TEMPLATE_PACK }}/[whole_uni_form.html|whole_uni_formset.html].

12 Chapter 1. User Guide

django-crispy-forms Documentation, Release 2.0

field_template
When set allows you to render a form/formset using a custom field template. Default template is at {{
TEMPLATE_PACK }}/field.html.

form_method = ``POST``
Specifies form method attribute. You can see it to POST or GET. Defaults to POST.

form_action
Applied to the form action attribute. Can be a named URL in your URLconf that can be executed via the {% url
%} template tag. Example: ‘show_my_profile’. In your URLconf you could have something like:

url(r'^show/profile/$', 'show_my_profile_view', name='show_my_profile')

You can also point it to a URL ‘/whatever/blabla/’.

Sometimes you may want to add arguments to the URL, for that you will have to do in your view:

from django.urls import reverse
form.helper.form_action = reverse('url_name', args=[event.id])
form.helper.form_action = reverse('url_name', kwargs={'book_id': book.id})

attrs
Added in 1.2.0, a dictionary to set any kind of form attributes. Underscores in keys are translated into hyphens.
The recommended way when you need to set several form attributes in order to keep your helper tidy:

``{'id': 'form-id', 'data_id': '/whatever'}``
<form id="form-id" data-id="/whatever" ...>

form_id
Specifies form DOM id attribute. If no id provided then no id attribute is created on the form.

form_class
String containing separated CSS classes to be applied to form class attribute.

form_tag = True
It specifies if <form></form> tags should be rendered when using a Layout. If set to False it renders the form
without the <form></form> tags. Defaults to True.

disable_csrf = False
Disable CSRF token, when done, crispy-forms won’t use {% csrf_token %} tag. This is useful when rendering
several forms using {% crispy %} tag and form_tag = False csrf_token gets rendered several times.

form_error_title
If you are rendering a form using {% crispy %} tag and it has non_field_errors to display, they are rendered
in a div. You can set the title of the div with this attribute. Example: “Form Errors”.

formset_error_title
If you are rendering a formset using {% crispy %} tag and it has non_form_errors to display, they are ren-
dered in a div. You can set the title of the div with this attribute. Example: “Formset Errors”.

form_show_errors = True
Default set to True. It decides whether to render or not form errors. If set to False, form.errors will not be
visible even if they happen. You have to manually render them customizing your template. This allows you to
customize error output.

render_unmentioned_fields = False
By default django-crispy-forms renders the layout specified if it exists strictly, which means it only renders what
the layout mentions, unless your form has Meta.fields and Meta.exclude defined, in that case it uses them.
If you want to render unmentioned fields (all form fields), for example if you are worried about forgetting men-
tioning them you have to set this property to True. It defaults to False.

1.4. FormHelper 13

django-crispy-forms Documentation, Release 2.0

render_hidden_fields = False
By default django-crispy-forms renders the layout specified if it exists strictly. Sometimes you might be interested
in rendering all form’s hidden fields no matter if they are mentioned or not. Useful when trying to render forms
with layouts as part of a formset with hidden primary key fields. It defaults to False.

render_required_fields = False
By default django-crispy-forms renders the layout specified if it exists strictly. Sometimes you might be interested
in rendering all form’s required fields no matter if they are mentioned or not. It defaults to False.

include_media = True
By default django-crispy-forms renders all form media for you within the form. If you want to render form media
yourself manually outside the form, set this to False. If you want to globally prevent rendering of form media,
override the FormHelper class with this setting modified. It defaults to True.

1.4.3 Bootstrap Helper attributes

There are currently some helper attributes that only have functionality for a specific template pack. This doesn’t nec-
essarily mean that they won’t be supported for other template packs in the future.

help_text_inline = False
Sets whether help texts should be rendered inline or block. If set to True help texts will be rendered using
help-inline class, otherwise using help-block. By default text messages are rendered in block mode.

error_text_inline = True
Sets whether to render error messages inline or block. If set to True errors will be rendered using help-inline
class, otherwise using help-block. By default error messages are rendered in inline mode.

form_show_labels = True
Default set to True. Determines whether or not to render the form’s field labels.

1.4.4 Bootstrap 3 Helper attributes

All previous, bootstrap (version 2) attributes are also settable in bootstrap 3 template pack FormHelpers. Here are
listed the ones, that are only available in bootstrap3 template pack:

label_class = ‘’
Default set to ''. This class will be applied to every label, this is very useful to do horizontal forms. Set it for
example like this label_class = col-lg-2.

field_class = ‘’
Default set to ''. This class will be applied to every div controls wrapping a field. This is useful for doing
horizontal forms. Set it for example like this field_class = col-lg-8.

1.4.5 Bootstrap 4 Helper attributes

All previous, bootstrap (version 2 and 3) attributes are also settable in bootstrap 4 template pack FormHelpers.
Here are listed the ones, that are only available in bootstrap4 template pack:

use_custom_control = True
Enables the optional UI customization of the template pack for radio, checkbox, select and file field. Useful when
you already have customization based on the default interpretation of the template pack. Setting to False results
in the standard bootstrap classes being applied for radio and checkbox, and Django rendering for file field. See
table below for examples.

The file field requires additional JS to enable its functionality, it is provided within the template pack as vanilla
JS.

14 Chapter 1. User Guide

https://getbootstrap.com/docs/4.3/components/forms/#custom-forms
https://getbootstrap.com/docs/4.3/components/forms/#checkboxes-and-radios
https://www.w3schools.com/bootstrap4/bootstrap_forms_custom.asp#myFile

django-crispy-forms Documentation, Release 2.0

Defaults to True.

Standard Optional

1.4.6 Custom Helper attributes

Maybe you would like FormHelper to do some extra thing that is not currently supported or maybe you have a very
specific use case. The good thing is that you can add extra attributes and crispy-forms will automatically inject them
within template context. Let’s see an example, to make things clear.

We want some forms to have uppercase labels, and for that we would like to set a helper attribute name
labels_uppercase to True or False. So we go and set in our helper:

helper.labels_uppercase = True

What will happen is crispy-forms will inject a Django template variable named {{ labels_uppercase }} with its
corresponding value within its templates, including field.html, which is the template in charge of rendering a field
when using crispy-forms. So we can go into that template and customize it. We will need to get familiar with it, but
it’s quite easy to follow; in the end it’s just a Django template.

When we find where labels get rendered, this chunk of code to be more precise:

{% if field.label and not field|is_checkbox and form_show_labels %}
<label for="{{ field.id_for_label }}" class="control-label {% if field.field.

→˓required %}requiredField{% endif %}">
{{ field.label }}{% if field.field.required %}*</

→˓span>{% endif %}
</label>

{% endif %}

The line that we would change would end up like this:

{% if not labels_uppercase %}{{ field.label }}{% else %}{{ field.label|upper }}{% endif
→˓%}{% if field.field.required %}

Now we only need to override field template, for that you may want to check section Overriding layout objects templates.

1.4. FormHelper 15

django-crispy-forms Documentation, Release 2.0

Warning: Be careful, depending on what you aim to do, sometimes using dynamic layouts is a better option, check
section Updating layouts on the go.

1.5 Layouts

1.5.1 Fundamentals

Django-crispy-forms defines another powerful class called Layout, which allows you to change the way the form
fields are rendered. This allows you to set the order of the fields, wrap them in divs or other structures, add html,
set ids, classes or attributes to whatever you want, etc. And all that without writing a custom form template, using
programmatic layouts. Just attach the layout to a helper, layouts are optional, but probably the most powerful thing
django-crispy-forms has to offer.

A Layout is constructed by layout objects, which can be thought of as form components.

All these components are explained later in Universal layout objects, what you need to know now about them is that
every component renders a different template and has a different purpose. Let’s write a couple of different layouts for
our form, continuing with our form class example (note that the full form is not shown again).

Let’s add a layout to our helper:

from crispy_forms.helper import FormHelper
from crispy_forms.layout import Layout, Fieldset, Submit

class ExampleForm(forms.Form):
[...]
def __init__(self, *args, **kwargs):

super().__init__(*args, **kwargs)
self.helper = FormHelper()
self.helper.layout = Layout(

Fieldset(
'first arg is the legend of the fieldset',
'like_website',
'favorite_number',
'favorite_color',
'favorite_food',
'notes'

),
Submit('submit', 'Submit', css_class='button white'),

)

When we render the form now using:

{% load crispy_forms_tags %}
{% crispy example_form %}

We will get the fields wrapped in a fieldset, whose legend will be set to ‘first arg is the legend of the fieldset’. The
fields’ order will be: like_website, favorite_number, favorite_color, favorite_food and notes. We also
get a submit button which will be styled with Bootstrap’s btn btn-primary classes.

This is just the tip of the iceberg: now imagine you want to add an explanation for what notes are, you can use HTML
layout object:

16 Chapter 1. User Guide

django-crispy-forms Documentation, Release 2.0

Layout(
Fieldset(

'Tell us your favorite stuff {{ username }}',
'like_website',
'favorite_number',
'favorite_color',
'favorite_food',
HTML("""

<p>We use notes to get better, please help us {{ username }}
→˓</p>

"""),
'notes'

)
)

As you’ll notice the fieldset legend is context aware and you can write it as if it were a chunk of a template where
the form will be rendered. The HTML object will add a message before the notes input and it’s also context aware.
Note how you can wrap layout objects into other layout objects. Layout objects Fieldset, Div, MultiField and
ButtonHolder can hold other Layout objects within. Let’s do an alternative layout for the same form:

Layout(
MultiField(

'Tell us your favorite stuff {{ username }}',
Div(

'like_website',
'favorite_number',
css_id = 'special-fields'

),
'favorite_color',
'favorite_food',
'notes'

)
)

This time we are using a MultiField, which is a layout object that as a general rule can be used in the same places
as Fieldset. The main difference is that this renders all the fields wrapped in a div and when there are errors in the
form submission, they are shown in a list instead of each one surrounding the field. Sometimes the best way to see
what layout objects do, is just try them and play with them a little bit.

1.5.2 Layout objects attributes

All layout objects you can set kwargs that will be used as HTML attributes. For example if you want to turn autocom-
plete off for a field you can do:

Field('field_name', autocomplete='off')

If you want to set html attributes, with words separated by hyphens like data-name, as Python doesn’t support hyphens
in keyword arguments and hyphens are the usual notation in HTML, underscores will be translated into hyphens, so
you would do:

Field('field_name', data_name="whatever")

As class is a reserved keyword in Python, for it you will have to use css_class. For example:

1.5. Layouts 17

django-crispy-forms Documentation, Release 2.0

Field('field_name', css_class="black-fields")

And id attribute is set using css_id:

Field('field_name', css_id="custom_field_id")

1.5.3 Universal layout objects

These ones live in module crispy_forms.layout. These are layout objects that are not specific to a template pack.
We’ll go one by one, showing usage examples:

• Div: It wraps fields in a <div>:

Div('form_field_1', 'form_field_2', 'form_field_3', ...)

NOTE Mainly in all layout objects you can set kwargs that will be used as HTML attributes. As class is a reserved
keyword in Python, for it you will have to use css_class. For example:

Div('form_field_1', style="background: white;", title="Explication title", css_class=
→˓"bigdivs")

• HTML: A very powerful layout object. Use it to render pure html code. In fact it behaves as a Django template
and it has access to the whole context of the page where the form is being rendered. This layout object doesn’t
accept any extra parameters than the html to render, you cannot set html attributes like in Div:

HTML("{% if success %} <p>Operation was successful</p> {% endif %}")

Warning: Beware that this is rendered in a standalone template, so if you are using custom template-
tags or filters, don’t forget to add your {% load custom_tags %}

• Field: Extremely useful layout object. You can use it to set attributes in a field or render a specific field with
a custom template. This way you avoid having to explicitly override the field’s widget and pass an ugly attrs
dictionary:

Field('password', id="password-field", css_class="passwordfields", title=
→˓"Explanation")
Field('slider', template="custom-slider.html")

This layout object can be used to easily extend Django’s widgets. If you want to render a Django form field as hidden
you can simply do:

Field('field_name', type="hidden")

If you need HTML5 attributes, you can easily do those using underscores data_name kwarg here will become into
data-name in your generated html:

Field('field_name', data_name="special")

Fields in bootstrap are wrapped in a <div class="control-group">. You may want to set extra classes in this div,
for that do:

Field('field_name', wrapper_class="extra-class")

18 Chapter 1. User Guide

django-crispy-forms Documentation, Release 2.0

• Submit: Used to create a submit button. First parameter is the name attribute of the button, second parameter is
the value attribute:

Submit('search', 'SEARCH')

Renders to:

<input type="submit" name="search" value="SEARCH" class="submit submitButton" id="submit-
→˓id-search" />

• Hidden: Used to create a hidden input:

Hidden('name', 'value')

• Button: Creates a button:

Button('name', 'value')

• Reset: Used to create a reset input:

reset = Reset('name', 'value')

• Fieldset: It wraps fields in a <fieldset>. The first parameter is the text for the fieldset legend, as we’ve said it
behaves like a Django template:

Fieldset("Text for the legend {{ username }}",
'form_field_1',
'form_field_2'

)

• ButtonHolder: It wraps fields in a <div class=”buttonHolder”>, this is a legacy layout object from the
uni-form template pack:

ButtonHolder(
HTML('✓ Saved data'),
Submit('save', 'Save')

)

• MultiField: It wraps fields in a <div> with a label on top. When there are errors in the form submission it
renders them in a list instead of each one surrounding the field:

MultiField("Text for the label {{ username }}",
'form_field_1',
'form_field_2'

)

1.5. Layouts 19

django-crispy-forms Documentation, Release 2.0

1.5.4 Bootstrap Layout objects

These ones live under module crispy_forms.bootstrap.

• FormActions: It wraps fields in a <div class="form-actions">. It is usually used to wrap form’s buttons:

FormActions(
Submit('save', 'Save changes'),
Button('cancel', 'Cancel')

)

• AppendedText: It renders a bootstrap appended text input. The first parameter is the name of the field to add
appended text to. The second is the appended text which can be wrapped in Django’s mark_safe to allow it to
be HTML like. There is an optional parameter active, by default set to False, that you can set to a boolean to
render appended text active. See input_size to change the size of this input:

AppendedText('field_name', 'appended text to show')
AppendedText('field_name', '$', active=True)

• PrependedText: It renders a bootstrap prepended text input. The first parameter is the name of the field to add
prepended text to. The second is the prepended text which can be wrapped in Django’s mark_safe to allow it to
be HTML like. There is an optional parameter active, by default set to False, that you can set to a boolean to
render prepended text active. See input_size to change the size of this input:

PrependedText('field_name', mark_safe('Prepended text to show'))
PrependedText('field_name', '@', placeholder="username")

• PrependedAppendedText: It renders a combined prepended and appended text. The first parameter is the name
of the field, then the prepended text and finally the appended text. The text can be wrapped in Django’s mark_safe
to allow it to be HTML like. See input_size to change the size of this input:

PrependedAppendedText('field_name', '$', '.00'),

• InlineCheckboxes: It renders a Django forms.MultipleChoiceField field using inline checkboxes:

InlineCheckboxes('field_name')

• InlineRadios: It renders a Django forms.ChoiceField field with its widget set to forms.RadioSelect using
inline radio buttons:

20 Chapter 1. User Guide

https://docs.djangoproject.com/en/dev/ref/utils/#django.utils.safestring.mark_safe
https://docs.djangoproject.com/en/dev/ref/utils/#django.utils.safestring.mark_safe
https://docs.djangoproject.com/en/dev/ref/utils/#django.utils.safestring.mark_safe

django-crispy-forms Documentation, Release 2.0

InlineRadios('field_name')

• StrictButton: It renders a button using <button> html, not input. By default type is set to button and class
is set to btn:

StrictButton("Button's content", name="go", value="go", css_class="extra")
StrictButton('Success', css_class="btn-success")

• FieldWithButtons: You can create an input connected with buttons:

The size of the field can be customised in the Bootstrap4 template pack by passing␣
→˓in the size modifier class to `input_size`.

FieldWithButtons('field_name', StrictButton("Go!"), input_size="input-group-sm")

• Tab & TabHolder: Tab renders a tab, different tabs need to be wrapped in a TabHolder for automatic JavaScript
functioning, also you will need bootstrap-tab.js included in your static files:

TabHolder(
Tab('First Tab',

'field_name_1',
Div('field_name_2')

),
Tab('Second Tab',

Field('field_name_3', css_class="extra")
)

)

• Accordion & AccordionGroup: AccordionGroup renders an accordion pane, different groups need to be
wrapped in an Accordion for automatic JavaScript functioning, also you will need bootstrap-tab.js in-
cluded in your static files:

Accordion(
AccordionGroup('First Group',

'radio_buttons'
),
AccordionGroup('Second Group',

Field('field_name_3', css_class="extra")
(continues on next page)

1.5. Layouts 21

django-crispy-forms Documentation, Release 2.0

(continued from previous page)

)
)

• Alert: Alert generates markup in the form of an alert dialog:

Alert(content="Warning! Best check yo self, you're not looking too␣
→˓good.")

• UneditableField: UneditableField renders a disabled field using the bootstrap uneditable-input class:

UneditableField('text_input', css_class='form-control-lg')

• Modal: Modal displays it’s fields inside a bootstrap modal that can be customized using kwargs upon initializa-
tion. See the bootstrap docs for more examples of modals and how to control your modal via attributes or via
javascript. Only supports Bootstrap v3 or higher:

Layout(
Modal(

email.help_text was set during the initalization of the django form field
Field('email', placeholder="Email", wrapper_class="mb-0"),
Button(

"submit",
"Send Reset Email",
id="email_reset",
css_class="btn-primary mt-3",
onClick="someJavasciptFunction()", # used to submit the form

),
css_id="my_modal_id",
title="This is my modal",
title_class="w-100 text-center",

)
)

22 Chapter 1. User Guide

https://getbootstrap.com/docs/4.0/components/modal/#via-data-attributes
https://getbootstrap.com/docs/4.0/components/modal/#via-javascript
https://getbootstrap.com/docs/4.0/components/modal/#via-javascript

django-crispy-forms Documentation, Release 2.0

Input group size

Input group size: By default the standard Bootstrap input sizes are used. To adjust the size of an input group
(AppendedText, PrependedText, PrependedAppendedText) add the appropriate CSS class:

Bootstrap 3 - Inputs and spans need size class. Use `css_class`.
PrependedText('field_name', StrictButton("Go!"), css_class="input-sm")
PrependedText('field_name', StrictButton("Go!"), css_class="input-lg")

Bootstrap 4 - Wrapping div needs size class. Use `input_size`.
PrependedText('field_name', StrictButton("Go!"), input_size="input-group-sm")
PrependedText('field_name', StrictButton("Go!"), input_size="input-group-lg")

1.5.5 Overriding layout objects templates

The mentioned set of Universal layout objects has been thoroughly designed to be flexible, standard compatible and
support Django form features. Every Layout object is associated to a different template that lives in templates/{{
TEMPLATE_PACK_NAME }}/layout/ directory.

Some advanced users may want to use their own templates, to adapt the layout objects to their use or necessities. There
are three ways to override the template that a layout object uses.

• Globally: You override the template of the layout object, for all instances of that layout object you use:

from crispy_forms.layout import Div
Div.template = 'my_div_template.html'

• Individually: You can override the template for a specific layout object in a layout:

Layout(
Div(

'field1',
'field2',
template='my_div_template.html'

)
)

1.5. Layouts 23

django-crispy-forms Documentation, Release 2.0

• Overriding templates directory: This means mimicking crispy-forms directory structure into your project and
then copying the templates that you want to override there, finally editing those copies. If you are using this
approach it’s better to just copy and edit templates you will customize instead of all.

1.5.6 Overriding project templates

You need to differentiate between layout objects’ templates and django-crispy-forms templates. There are some tem-
plates that live in templates/{{ TEMPLATE_PACK_NAME }} that define the form/formset structure, how a field or
errors are rendered, etc. They add very little logic and are pretty much basic wrappers for the rest of django-crispy-
forms power. To override these ones you have two options:

• template and field_template attributes in FormHelper: Since version 1.3.0 you can override the form/formset
template and the field template using helper attributes, see section Helper attributes you can set. With this you
can change one specific form or all your project forms (creating a custom FormHelper base class for example).

• Overriding templates directory: This works the same as explained in section Overriding layout objects tem-
plates. If you are adapting crispy-forms templates to a popular open source template pack you use, submit it so
more people can benefit from it.

• Creating a TEMPLATE PACK: You maybe want to use crispy-forms with you favorite CSS framework or your
Company’s CSS. For doing so, you will need to be quite familiar with crispy-forms, layout objects and their tem-
plates. You will probably want to start off with one of the existing template packs, probably bootstrap. Imagine
your template pack is named chocolate, that means you probably want your root directory named the same way.
For using your template pack, you will have to set CRISPY_TEMPLATE_PACK = 'chocolate' variable in your
settings file and also set CRISPY_ALLOWED_TEMPLATE_PACKS = ('bootstrap', 'chocolate'). This way
crispy-forms will know you want to use your own template pack, which is an allowed one and where to look for
it.

1.5.7 Creating your own layout objects

The Universal layout objects bundled with django-crispy-forms are a set of the most seen components that build a
form. You will probably be able to do anything you need combining them. Anyway, you may want to create your
own components, for doing that, you will need a good grasp of django-crispy-forms. Every layout object must have a
method called render. Its prototype should be:

def render(self, form, context):

The official layout objects live in layout.py and bootstrap.py, you may want to have a look at them to fully
understand how to proceed. But in general terms, a layout object is a template rendered with some parameters passed.

If you come up with a good idea and design a layout object you think others could benefit from, please open an issue
or send a pull request, so django-crispy-forms gets better.

1.5.8 Composing layouts

Imagine you have several forms that share a big chunk of the same layout. There is a easy way you can create a Layout,
reuse and extend it. You can have a Layout as a component of another Layout. You can build that common chunk,
different ways. As a separate class:

class CommonLayout(Layout):
def __init__(self, *args, **kwargs):

super().__init__(
MultiField("User data",

(continues on next page)

24 Chapter 1. User Guide

django-crispy-forms Documentation, Release 2.0

(continued from previous page)

'username',
'lastname',
'age'

)
)

Maybe an object instance is good enough:

common_layout = Layout(
MultiField("User data",

'username',
'lastname',
'age'

)
)

Then you can do:

helper.layout = Layout(
CommonLayout(),
Div(

'favorite_food',
'favorite_bread',
css_id = 'favorite-stuff'

)
)

Or:

helper.layout = Layout(
common_layout,
Div(

'professional_interests',
'job_description',

)
)

We have defined a layout and used it as a chunk of another layout, which means that those two layouts will start the
same way and then extend the layout in different ways.

1.6 How to create your own template packs

First you will have to name your template pack, for this you can’t use the name of one of the available template packs in
crispy-forms, due to name collisions. For example, let’s say in the company we work for, a designer has come up with a
CSS bootstrap internally known as chocolate. The company has a Django project that needs to start using chocolate,
therefore we need to create a folder named chocolate within our templates directory. Check your TEMPLATE_DIRS
setting in Django and pick your preferred path.

Once we have that folder created, we will have to create a concrete directory hierarchy so that crispy-forms can pick it
up. This is what bootstrap template pack (v2) looks like:

1.6. How to create your own template packs 25

django-crispy-forms Documentation, Release 2.0

.
accordion-group.html
accordion.html
betterform.html
display_form.html
errors.html
errors_formset.html
* field.html
layout

alert.html
* baseinput.html
button.html
checkboxselectmultiple.html
checkboxselectmultiple_inline.html
div.html
field_errors.html
field_errors_block.html
field_with_buttons.html
fieldset.html
formactions.html
help_text.html
help_text_and_errors.html
multifield.html
prepended_appended_text.html
radioselect.html
radioselect_inline.html
tab-link.html
tab.html
uneditable_input.html

table_inline_formset.html
* uni_form.html
uni_formset.html
* whole_uni_form.html
whole_uni_formset.html

Take it easy, don’t panic, we won’t need this many templates for our template pack. Templates are also quite simple to
follow if you understand what problem crispy-forms solves. The bare minimum would be the templates marked with
an asterisk.

1.6.1 Fundamentals

First, since crispy-forms 1.5.0, template packs are self contained, you cannot reference a template from a different
template pack.

crispy-forms has many features, but maybe you don’t need your template pack to cover all of them. {% crispy %}
templatetag renders forms using a global structure contained within whole_uni_form.html. However, |crispy filter
uses uni_form.html. As you’ve probably guessed, the name of the templates comes from the old days of django-uni-
form. Anyway, as an example, if we don’t use |crispy filter, we don’t really need to maintain a uni_form.html
template within our template pack.

If we are planning on using formsets + {% crispy %} we will need a whole_uni_formset.html, instead if we use
formsets + |crispy we will need uni_formset.html.

All of these templates use a tag named {% crispy_field %} that is loaded doing {% load crispy_forms_field

26 Chapter 1. User Guide

django-crispy-forms Documentation, Release 2.0

%}, that generates the html for <input> using field.html template, but previously doing Python preparation be-
forehand. In case you wonder the code for this tag lives in crispy_forms.templatetags.crispy_forms_field,
together with some other stuff.

So a template pack for a very basic example covering only forms and the usage of {% crispy %} tag, would need 2
templates: whole_uni_form.html, field.html. Well, that’s not completely true, because every layout object has
a template attached. So if we wanted to use Div, we would need div.html. Some are not that obvious, if you need
Submit, you will need baseinput.html. Some layout objects, don’t really have a template attached, like HTML.

In the previous template tree, there are some templates that are there for DRY purposes, they are not really compulsory
or part of a layout object, so don’t worry too much.

1.6.2 Starting

Now your best bet is probably start copying some or all of the templates under an existing crispy-forms template pack,
such as bootstrap3, then drop the ones you don’t need. Next step is edit those templates, and adjust the HTML/CSS
making it align with chocolate, that sometimes means dropping/adding divs, classes and other stuff around. You can
always create a form in your application, with a helper attached to that new template pack and start trying out your
adaptation right away.

Currently, there is an existing template pack for crispy-forms that doesn’t live in core, developed by David Thenon as
an external pluggable application named crispy-forms-foundation, it’s also a good reference to check out.

Beware that crispy-forms evolves and adds new FormHelper.attributes, if you want to use those in the future you
will have to adapt your templates adding those variables and its handling.

1.7 {% crispy %} tag with formsets

{% crispy %} tag supports formsets rendering too, all kind of Django formsets: formsets, modelformsets and inline
formsets. In this section, it’s taken for granted that you are familiar with previous explained crispy-forms concepts in
the docs, like FormHelper, how to set FormHelper attributes or render a simple form using {% crispy %} tag.

1.7.1 Formsets

It’s not the purpose of this documentation to explain how formsets work in detail, for that you should check Django
official formset docs. Let’s start creating a formset using the previous ExampleForm form:

from django.forms.models import formset_factory

ExampleFormSet = formset_factory(ExampleForm, extra=3)
formset = ExampleFormSet()

This is how you would render the formset using default rendering, no layouts or form helpers:

{% crispy formset %}

Of course, you can still use a helper, otherwise there would be nothing crispy in this. When using a FormHelper with
a formset compared to when you use it with a form, the main difference is that helper attributes are applied to the form
structure, while the layout is applied to the formset’s forms. Let’s create a helper for our ExampleFormSet:

class ExampleFormSetHelper(FormHelper):
def __init__(self, *args, **kwargs):

(continues on next page)

1.7. {% crispy %} tag with formsets 27

https://github.com/sveetch/crispy-forms-foundation
https://docs.djangoproject.com/en/dev/topics/forms/formsets/
https://docs.djangoproject.com/en/dev/topics/forms/formsets/

django-crispy-forms Documentation, Release 2.0

(continued from previous page)

super().__init__(*args, **kwargs)
self.form_method = 'post'
self.layout = Layout(

'favorite_color',
'favorite_food',

)
self.render_required_fields = True

This helper is quite easy to follow. We want our form to use POST method, and we want favorite_color to be the
first field, then favorite_food and finally we tell crispy to render all required fields after. Let’s go and use it, when
using {% crispy %} tag in a template there is one main difference when rendering formsets vs forms, in this case you
need to specify the helper explicitly.

This would be part of an hypothetical function view:

formset = ExampleFormSet()
helper = ExampleFormSetHelper()
return render(request, 'template.html', {'formset': formset, 'helper': helper})

Then in template.html you would have to do:

{% crispy formset helper %}

There are two ways you can add submit buttons to a formset. Using FormHelper.add_input method:

helper.add_input(Submit("submit", "Save"))

Or you can set FormHelper.form_tag to False and control the formset outer structure at your will writing boring
HTML:

<form action="{% url 'save_formset' %}" method="POST">
{% crispy formset helper %}
<div class="form-actions">

<input type="submit" name="submit" value="Save" class="btn btn-primary" id=
→˓"submit-save">

</div>
</form>

Finally, model formsets and inline formsets are rendered exactly the same as formsets, the only difference is how you
build them in your Django code.

1.7.2 Extra context

Rendering any kind of formset with crispy injects some extra context in the layout rendering so that you can do things
like:

class ExampleFormSetHelper(FormHelper):
def __init__(self, *args, **kwargs):

super(FormHelper, self).__init__(*args, **kwargs)
self.form_method = 'post'
self.layout = Layout(

HTML('{% if forloop.first %} Only display text on the first iteration... {%␣
→˓endif %}'),

(continues on next page)

28 Chapter 1. User Guide

django-crispy-forms Documentation, Release 2.0

(continued from previous page)

Fieldset('Item: {{forloop.counter}}', 'field'),
'favorite_color',
'favorite_food',

)
self.add_input(Submit('submit', 'Save'))

Basically you can access a forloop Django node, as if you were rendering your formsets forms using a for loop.

1.7.3 Custom templates and table inline formsets

Default formset template will render your formset’s form using divs, but many times people prefer tables for formsets.
Don’t worry, crispy-forms’s got you covered. FormHelper has an attribute named template that can be used to specify
a custom template for rendering a form or formset, in this case a formset. Obviously when we specify a template
attribute, we are making that helper only usable with forms or formsets.

The name of the template to use is table_inline_formset.html and you use it doing:

helper.template = 'bootstrap/table_inline_formset.html'

The best part is that if this template doesn’t do exactly what you want, you can copy it into your templates folder,
customize it and then link your helper to your alternative version. If you think what you are missing would be valuable
to others, then please submit a pull request at github.

Warning: This template doesn’t currently take into account any layout you have specified and only works with
bootstrap template pack.

1.7.4 Formset forms with different layouts

By default crispy-forms formset rendering shares the same layout among all formset’s forms. This is the case 99% of
the times. But maybe you want to render your formset’s forms using different layouts that you cannot achieve using the
extra context injected, for that you will have to create and use a custom template. Most likely you will want to do:

{{ formset.management_form|crispy }}
{% for form in formset %}

{% crispy form %}
{% endfor %}

Where every form has a helper attribute from which crispy will grab the layout. In your view you will need to change
the layout or use a different help for every formset’s form. Make sure that you have form_tag attribute set to False,
otherwise you will get 3 individual forms rendered.

1.7. {% crispy %} tag with formsets 29

django-crispy-forms Documentation, Release 2.0

1.8 Updating layouts on the go

Layouts can be changed, adapted and generated programmatically.

The next sections will explain how to select parts of a layout and update them. We will use this API from the
FormHelper instance and not the layout itself. This API’s basic behavior consists of selecting the piece of the layout
to manipulate and chaining methods that alter it after that.

1.8.1 Selecting layout objects with slices

You can get a slice of a layout using familiar [] Python operator:

form.helper[1:3]
form.helper[2]
form.helper[:-1]

You can basically do all kind of slices, the same ones supported by Python’s lists. You can also concatenate them. If
you had this layout:

Layout(
Div('email')

)

You could access 'email' string doing:

form.helper[0][0]

1.8.2 wrap

One useful action you can apply on a slice is wrap, which wraps every selected field using a layout object type and
parameters passed. Let’s see an example. If We had this layout:

Layout(
'field_1',
'field_2',
'field_3'

)

We could do:

form.helper[1:3].wrap(Field, css_class="hello")

We would end up having this layout:

Layout(
'field_1',
Field('field_2', css_class='hello'),
Field('field_3', css_class='hello')

)

Note how wrap affects each layout object selected, if you would like to wrap field_2 and field_3 together in a
Field layout object you will have to use wrap_together.

Beware that the slice [1:3] only looks in the first level of depth of the layout. So if the previous layout was this way:

30 Chapter 1. User Guide

django-crispy-forms Documentation, Release 2.0

Layout(
'field_1',
Div('field_2'),
'field_3'

)

helper[1:3] would return this layout:

Layout(
'field_1',
Field(Div('field_2'), css_class="hello"),
Field('field_3', css_class="hello")

)

Parameters passed to wrap or wrap_together will be used for creating the layout object that is wrapping selected
fields. You can pass args and kwargs. If you are using a layout object like Fieldset which needs a string as
compulsory first argument, wrap will not work as desired unless you provide the text of the legend as an argument to
wrap. Let’s see a valid example:

form.helper[1:3].wrap(Fieldset, "legend of the fieldset")

Also you can pass args and kwargs:

form.helper[1:3].wrap(Fieldset, "legend of the fieldset", css_class="fieldsets")

1.8.3 wrap_together

wrap_together wraps a whole slice within a layout object type with parameters passed. Let’s see an example. If We
had this layout:

Layout(
'field_1',
'field_2',
'field_3'

)

We could do:

form.helper[0:3].wrap_together(Field, css_class="hello")

We would end up having this layout:

Layout(
Field(

'field_1',
'field_2',
'field_3',
css_class='hello'

)
)

1.8. Updating layouts on the go 31

django-crispy-forms Documentation, Release 2.0

1.8.4 update_attributes

Updates attributes of every layout object contained in a slice:

Layout(
'field_1',
Field('field_2'),
Field('field_3')

)

We could do:

form.helper[0:3].update_attributes(css_class="hello")

Layout would turn into:

Layout(
'field_1',
Field('field_2', css_class='hello'),
Field('field_3', css_class='hello')

)

We can also apply it to a field name wrapped in a layout object:

form.helper['field_2'].update_attributes(css_class="hello")

However, the following wouldn’t be correct:

form.helper['field_1'].update_attributes(css_class="hello")

Because it would change Layout attrs. It’s your job to have it wrapped correctly.

1.8.5 all

This method selects all first level of depth layout objects:

form.helper.all().wrap(Field, css_class="hello")

1.8.6 Selecting a field name

If you pass a string with the field name, this field name will be searched greedy throughout the whole Layout depth
levels. Imagine we have this layout:

Layout(
'field_1',
Div(

Div('password')
),
'field_3'

)

If we do:

32 Chapter 1. User Guide

django-crispy-forms Documentation, Release 2.0

form.helper['password'].wrap(Field, css_class="hero")

Previous layout would become:

Layout(
'field_1',
Div(

Div(
Field('password', css_class="hero")

)
),
'field_3'

)

1.8.7 filter

This method will allow you to filter layout objects by its class type, applying actions to them:

form.helper.filter(basestring).wrap(Field, css_class="hello")
form.helper.filter(Div).wrap(Field, css_class="hello")

You can filter several layout objects types at the same time:

form.helper.filter(basestring, Div).wrap(Div, css_class="hello")

By default filter is not greedy, so it only searches first depth level. But you can tune it to search in different levels
of depth with a kwarg max_level (By default set to 0). Let’ see some examples, to clarify it. Imagine we have this
layout:

Layout(
'field_1',
Div(

Div('password')
),
'field_3'

)

If we did:

form.helper.filter(basestring).wrap(Field, css_class="hello")

Only field_1 and field_3 would be wrapped, resulting into:

Layout(
Field('field_1', css_class="hello"),
Div(

Div('password')
),
Field('field_3', css_class="hello"),

)

If we wanted to search deeper, wrapping password, we would need to set max_level to 2 or more:

1.8. Updating layouts on the go 33

django-crispy-forms Documentation, Release 2.0

form.helper.filter(basestring, max_level=2).wrap(Field, css_class="hello")

In other words max_level indicates the number of jumps crispy-forms can do within a layout object for matching. In
this case getting into the first Div would be one jump, and getting into the next Div would be the second jump, thus
max_level=2.

We can turn filter greedy, making it search as deep as possible, setting greedy to True:

form.helper.filter(basestring, greedy=True).wrap(Div, css_class="hello")

Parameters:
• max_level: An integer representing the number of jumps that crispy-forms should do when filtering. Defaults

to 0.

• greedy: A boolean that indicates whether to filter greedy or not. Defaults to False.

1.8.8 filter_by_widget

Matches all fields of a widget type. This method assumes you are using a helper with a form attached, see section
FormHelper with a form attached (Default layout), you could filter by widget type doing:

form.helper.filter_by_widget(forms.PasswordInput).wrap(Field, css_class="hero")

filter_by_widget is greedy by default, so it searches in depth. Let’s see a use case example, imagine we have this
Layout:

Layout(
'username',
Div('password1'),
Div('password2')

)

Supposing password1 and password2 fields are using widget PasswordInput, would turn into:

Layout(
'username',
Div(Field('password1', css_class="hero")),
Div(Field('password2', css_class="hero"))

)

An interesting real use case example here would be to wrap all SelectInputs with a custom made ChosenField that
renders the field using a chosenjs compatible field.

1.8.9 exclude_by_widget

Excludes all fields of a widget type. This method assumes you are using a helper with a form attached, see section
FormHelper with a form attached (Default layout):

form.helper.exclude_by_widget(forms.PasswordInput).wrap(Field, css_class="hero")

exclude_by_widget is greedy by default, so it searches in depth. Let’s see a use case example, imagine we have this
Layout:

34 Chapter 1. User Guide

django-crispy-forms Documentation, Release 2.0

Layout(
'username',
Div('password1'),
Div('password2')

)

Supposing password1 and password2 fields are using widget PasswordInput, would turn into:

Layout(
Field('username', css_class="hero"),
Div('password1'),
Div('password2')

)

1.8.10 Manipulating a layout

Besides selecting layout objects and applying actions to them, you can also manipulate layouts themselves and layout
objects easily, like if they were lists. We won’t do this from the helper, but the layout and layout objects themselves.
Consider this a lower level API.

All layout objects that can wrap others, contain a inner attribute fields which is a list, not a dictionary as in Django
forms. You can apply any list methods on them easily. Beware that a Layout behaves itself like other layout objects
such as Div, the only difference is that it is the root of the tree.

This is how you would replace a layout object for other:

layout[0][3][1] = Div('field_1')

This is how you would add one layout object at the end of the Layout:

layout.append(HTML("<p>whatever</p>"))

This is how you would add one layout object at the end of another layout object:

layout[0].append(HTML("<p>whatever</p>"))

This is how you would add several layout objects to a Layout:

layout.extend([
HTML("<p>whatever</p>"),
Div('add_field_on_the_go')

])

This is how you would add several layout objects to another layout object:

layout[0][2].extend([
HTML("<p>whatever</p>"),
Div('add_field_on_the_go')

])

This is how you would delete the second layout object within the Layout:

layout.pop(1)

This is how you wold delete the second layout object within the second layout object:

1.8. Updating layouts on the go 35

django-crispy-forms Documentation, Release 2.0

layout[1].pop(1)

This is how you would insert a layout object in the second position of a Layout:

layout.insert(1, HTML("<p>whatever</p>"))

This is how you would insert a layout object in the second position of the second layout object:

layout[1].insert(1, HTML("<p>whatever</p>"))

Warning: Remember always that if you are going to manipulate a helper or layout in a view or any part of your
code, you better use an instance level variable.

1.9 Frequently Asked Questions

• Technical

– Displaying columns in a bootstrap Layout

– Using a custom widget

• General

– Why use django-crispy-forms and not other app

– How did this all get started?

– How fast is django-crispy-forms

– Which versions of Python does this support?

– Which versions of Django does this support?

1.9.1 Technical

Displaying columns in a bootstrap Layout

Of course you can display form fields within columns, the same way you would do it in a standard bootstrap form, you
can do it in a bootstrap layout, see an example.

Using a custom widget

If you are using a custom widget you may find that django-crispy-forms does not render it correctly. In this case please
use a custom template for that field, see Overriding layout objects templates.

36 Chapter 1. User Guide

http://stackoverflow.com/questions/12144475/displaying-multiple-rows-and-columns-in-django-crispy-forms

django-crispy-forms Documentation, Release 2.0

1.9.2 General

Why use django-crispy-forms and not other app

Well, I’m obviously biased for answering this question. But I once answered it at StackOverflow.

How did this all get started?

In December 2008, while Daniel Feldroy was working for NASA’s Science Mission Directorate, his team began to use
Django and Pinax. There was a necessity to make all the forms in Pinax Section 508 compatible, and the thought of
going through all of forms and rewriting {{ form }} as a block of {% for field in form %}with all the template
logic seemed like way too much work.

So with the encouragement of Katie Cunningham, James Tauber and Jannis Leidel Daniel took the Django docs on
forms and combined it with Dragan Babic’s excellent Uni-Form CSS/JavaScript library and created the ubiquitous
as_uni_form filter. After that, fixing all the forms in Pinax to be section 508 compliant was trivial.

Not long before PyCon 2009 James Tauber suggested the {% uni_form form helper %} API, where one could
trivially create forms without writing any HTML.

At PyCon 2009 Jannis Leidel helped Daniel through releasing the 0.3 release of django-uni-form on PyPI. It was also
at that PyCon when the project moved from Google Code to Github.

Around January 2011 the project wasn’t very active, Github issues and forks were stacking up. At that time Miguel
Araujo found django-uni-form and loved the concept behind its architecture. He started working in a fork of the project,
trying to gather some old submitted patches. Around march of 2011, after conversations with Daniel, he got commit
powers in the project’s repository, reactivating dev branch. Releases 0.8.0, 0.9.0 followed and the project more than
doubled its watchers in Github.

By the end of 2011, Miguel and Daniel agreed on the necessity of renaming the project. As uni-form CSS framework
was not anymore the only option available and the name was confusing the users. Thus django-crispy-forms was born,
named by Audrey Feldroy. The project is now actively maintained and leaded by Miguel Araujo.

How fast is django-crispy-forms

Performance in form rendering is normally a nigh moot issue in Django, because the majority of speed issues are fixable
via appropriate use of Django’s cache engine. Templates and especially form rendering are usually the last things to
worry about when you try to increase performance.

However, because we do care about producing lean and fast code, work is being done to speed up and measure perfor-
mance of this library. These are the average times of rendering 1000 forms with the latest django-crispy-forms code in
Dell Latitude E6500 Intel Core 2 Duo @ 2.53GHz.

In production environments, you will want to activate template caching, see Installing django-crispy-forms.

Method Time with template caching
Plain Django 0.915469169617 sec
|crispy filter 4.23220916295 sec
{% crispy %} tag 4.53284406662 sec

1.9. Frequently Asked Questions 37

http://stackoverflow.com/questions/11749860/how-to-render-django-forms-choicefield-as-twitter-bootstrap-dropdown
https://twitter.com/pydanny
https://science.nasa.gov
https://djangoproject.com
https://pinaxproject.com
https://en.wikipedia.org/wiki/Section_508
https://twitter.com/kcunning
https://jtauber.com
https://twitter.com/jezdez
https://twitter.com/maraujop
https://twitter.com/maraujop
https://twitter.com/audreyfeldroy
https://twitter.com/maraujop

django-crispy-forms Documentation, Release 2.0

Which versions of Python does this support?

Versions supported include Python 2.6.x, 2.7.x, Python 3.3.x. If you need greater backwards compatibility, django-
crispy-forms below 1.3 supports 2.5.x, and django-uni-form 0.7.0 supports Python 2.4.x.

Which versions of Django does this support?

Versions supported include Django 1.3 or higher. Versions of django-crispy-forms below 1.3 support Django 1.2.x. If
you need to support earlier versions you will need to use django-uni-form 0.7.0.

• See who’s contributed to the project at crispy-forms contributors

• You can find a detailed history of the project in Github’s CHANGELOG

38 Chapter 1. User Guide

https://github.com/django-crispy-forms/django-crispy-forms/blob/main/CONTRIBUTORS.txt
https://github.com/django-crispy-forms/django-crispy-forms/blob/main/CHANGELOG.md

CHAPTER

TWO

API DOCUMENTATION

If you are looking for information on a specific function, class or method, this part of the documentation is for you.

2.1 API helpers

class helper.FormHelper(form=None)
This class controls the form rendering behavior of the form passed to the {% crispy %} tag. For doing so you
will need to set its attributes and pass the corresponding helper object to the tag:

{% crispy form form.helper %}

Let’s see what attributes you can set and what form behaviors they apply to:

form_method: Specifies form method attribute.
You can set it to ‘POST’ or ‘GET’. Defaults to ‘POST’

form_action: Applied to the form action attribute:
• Can be a named url in your URLconf that can be executed via the {% url %} template tag.

Example: ‘show_my_profile’. In your URLconf you could have something like:

path('show/profile/', 'show_my_profile_view', name = 'show_my_profile
→˓')

• It can simply point to a URL ‘/whatever/blabla/’.

form_id: Generates a form id for dom identification.
If no id provided then no id attribute is created on the form.

form_class: String containing separated CSS classes to be applied
to form class attribute.

form_group_wrapper_class: String containing separated CSS classes to be applied
to each row of inputs.

form_tag: It specifies if <form></form> tags should be rendered when using a Layout.
If set to False it renders the form without the <form></form> tags. Defaults to True.

form_error_title: If a form has non_field_errors to display, they
are rendered in a div. You can set title’s div with this attribute. Example: “Oooops!” or “Form
Errors”

formset_error_title: If a formset has non_form_errors to display, they
are rendered in a div. You can set title’s div with this attribute.

39

django-crispy-forms Documentation, Release 2.0

include_media: Whether to automatically include form media. Set to False if
you want to manually include form media outside the form. Defaults to True.

Public Methods:

add_input(input): You can add input buttons using this method. Inputs
added using this method will be rendered at the end of the form/formset.

add_layout(layout): You can add a Layout object to FormHelper. The Layout
specifies in a simple, clean and DRY way how the form fields should be rendered. You can wrap
fields, order them, customize pretty much anything in the form.

Best way to add a helper to a form is adding a property named helper to the form that returns customized
FormHelper object:

from crispy_forms.helper import FormHelper
from crispy_forms.layout import Submit

class MyForm(forms.Form):
title = forms.CharField(_("Title"))

@property
def helper(self):

helper = FormHelper()
helper.form_id = 'this-form-rocks'
helper.form_class = 'search'
helper.add_input(Submit('save', 'save'))
[...]
return helper

You can use it in a template doing:

{% load crispy_forms_tags %}
{% crispy form %}

get_attributes(template_pack=<SimpleLazyObject: <function get_template_pack>>)
Used by crispy_forms_tags to get helper attributes

render_layout(form, context, template_pack=<SimpleLazyObject: <function get_template_pack>>)
Returns safe html of the rendering of the layout

2.2 API Layout

class layout.BaseInput(name, value, *, css_id=None, css_class=None, template=None, **kwargs)
A base class to reduce the amount of code in the Input classes.

Parameters
name

[str] The name attribute of the button.

value
[str] The value attribute of the button.

css_id
[str, optional] A custom DOM id for the layout object. If not provided the name argument is
slugified and turned into the id for the submit button. By default None.

40 Chapter 2. API documentation

django-crispy-forms Documentation, Release 2.0

css_class
[str, optional] Additional CSS classes to be applied to the <input>. By default None.

template
[str, optional] Overrides the default template, if provided. By default None.

**kwargs
[dict, optional] Additional attributes are passed to flatatt and converted into key=”value”,
pairs. These attributes are added to the <input>.

Attributes
template: str

The default template which this Layout Object will be rendered with.

field_classes: str
CSS classes to be applied to the <input>.

render(form, context, template_pack=<SimpleLazyObject: <function get_template_pack>>, **kwargs)
Renders an <input /> if container is used as a Layout object. Input button value can be a variable in context.

class layout.Button(name, value, *, css_id=None, css_class=None, template=None, **kwargs)
Used to create a button descriptor for the {% crispy %} template tag.

Parameters
name

[str] The name attribute of the button.

value
[str] The value attribute of the button.

css_id
[str, optional] A custom DOM id for the layout object. If not provided the name argument is
slugified and turned into the id for the submit button. By default None.

css_class
[str, optional] Additional CSS classes to be applied to the <input>. By default None.

template
[str, optional] Overrides the default template, if provided. By default None.

**kwargs
[dict, optional] Additional attributes are passed to flatatt and converted into key=”value”,
pairs. These attributes are added to the <input>.

Examples

Note: form arg to render() is not required for BaseInput inherited objects.

>>> button = Button('Button 1', 'Press Me!')
>>> button.render("", "", Context())
'<input type="button" name="button-1" value="Press Me!" '
'class="btn" id="button-id-button-1"/>'

>>> button = Button('Button 1', 'Press Me!', css_id="custom-id",
css_class="custom class", my_attr=True, data="my-data")

>>> button.render("", "", Context())
(continues on next page)

2.2. API Layout 41

django-crispy-forms Documentation, Release 2.0

(continued from previous page)

'<input type="button" name="button-1" value="Press Me!" '
'class="btn custom class" id="custom-id" data="my-data" my-attr/>'

Usually you will not call the render method on the object directly. Instead add it to your Layout manually or use
the add_input method:

class ExampleForm(forms.Form):
[...]
def __init__(self, *args, **kwargs):

super().__init__(*args, **kwargs)
self.helper = FormHelper()
self.helper.add_input(Button('Button 1', 'Press Me!'))

Attributes
template: str

The default template which this Layout Object will be rendered with.

field_classes: str
CSS classes to be applied to the <input>.

input_type: str
The type attribute of the <input>.

class layout.ButtonHolder(*fields, css_id=None, css_class=None, template=None)
Layout object. It wraps fields in a <div class=”buttonHolder”>

This is where you should put Layout objects that render to form buttons

Parameters
*fields

[HTML or BaseInput] The layout objects to render within the ButtonHolder. It should only
hold HTML and BaseInput inherited objects.

css_id
[str, optional] A custom DOM id for the layout object. If not provided the name argument is
slugified and turned into the id for the submit button. By default None.

css_class
[str, optional] Additional CSS classes to be applied to the <input>. By default None.

template
[str, optional] Overrides the default template, if provided. By default None.

Examples

An example using ButtonHolder in your layout:

ButtonHolder(
HTML(Information Saved),
Submit('Save', 'Save')

)

Attributes

42 Chapter 2. API documentation

django-crispy-forms Documentation, Release 2.0

template: str
The default template which this Layout Object will be rendered with.

class layout.Column(*fields, css_id=None, css_class=None, template=None, **kwargs)
Layout object. It wraps fields in a <div> and the template adds the appropriate class to render the contents in a
column. e.g. col-md when using the Bootstrap4 template pack.

Parameters
*fields

[str, LayoutObject] Any number of fields as positional arguments to be rendered within the
<div>.

css_id
[str, optional] A DOM id for the layout object which will be added to the <div> if provided.
By default None.

css_class
[str, optional] Additional CSS classes to be applied in addition to those declared by the class
itself. If using the Bootstrap4 template pack the default col-md is removed if this string
contins another col- class. By default None.

template
[str, optional] Overrides the default template, if provided. By default None.

**kwargs
[dict, optional] Additional attributes are passed to flatatt and converted into key=”value”,
pairs. These attributes are added to the <div>.

Examples

In your Layout you can:

Column('form_field_1', 'form_field_2', css_id='col-example')

It is also possible to nest Layout Objects within a Row:

Div(
Column(

Field('form_field', css_class='field-class'),
css_class='col-sm,

),
Column('form_field_2', css_class='col-sm'),

)

Attributes
template

[str] The default template which this Layout Object will be rendered with.

css_class
[str, optional] CSS classes to be applied to the <div>. By default None.

class layout.Div(*fields, css_id=None, css_class=None, template=None, **kwargs)
Layout object. It wraps fields in a <div>.

Parameters

2.2. API Layout 43

django-crispy-forms Documentation, Release 2.0

*fields
[str, LayoutObject] Any number of fields as positional arguments to be rendered within the
<div>.

css_id
[str, optional] A DOM id for the layout object which will be added to the <div> if provided.
By default None.

css_class
[str, optional] Additional CSS classes to be applied in addition to those declared by the class
itself. By default None.

template
[str, optional] Overrides the default template, if provided. By default None.

**kwargs
[dict, optional] Additional attributes are passed to flatatt and converted into key=”value”,
pairs. These attributes are added to the <div>.

Examples

In your Layout you can:

Div(
'form_field_1',
'form_field_2',
css_id='div-example',
css_class='divs',

)

It is also possible to nest Layout Objects within a Div:

Div(
Div(

Field('form_field', css_class='field-class'),
css_class='div-class',

),
Div('form_field_2', css_class='div-class'),

)

Attributes
template

[str] The default template which this Layout Object will be rendered with.

css_class
[str, optional] CSS classes to be applied to the <div>. By default None.

class layout.Field(*fields, css_class=None, wrapper_class=None, template=None, **kwargs)
A Layout object, usually containing one field name, where you can add attributes to it easily.

Parameters
*fields

[str] Usually a single field, but can be any number of fields, to be rendered with the same
attributes applied.

44 Chapter 2. API documentation

django-crispy-forms Documentation, Release 2.0

css_class
[str, optional] CSS classes to be applied to the field. These are added to any classes included
in the attrs dict. By default None.

wrapper_class: str, optional
CSS classes to be used when rendering the Field. This class is usually applied to the <div>
which wraps the Field’s <label> and <input> tags. By default None.

template
[str, optional] Overrides the default template, if provided. By default None.

**kwargs
[dict, optional] Additional attributes are converted into key=”value”, pairs. These attributes
are added to the <div>.

Examples

Example:

Field('field_name', style="color: #333;", css_class="whatever", id="field_name")

Attributes
template

[str] The default template which this Layout Object will be rendered with.

attrs
[dict] Attributes to be applied to the field. These are converted into html attributes. e.g.
data_id: 'test' in the attrs dict will become data-id='test' on the field’s <input>.

class layout.Fieldset(legend, *fields, css_class=None, css_id=None, template=None, **kwargs)
A layout object which wraps fields in a <fieldset>

Parameters
legend

[str] The content of the fieldset’s <legend>. This text is context aware, to bring this to life
see the examples section.

*fields
[str] Any number of fields as positional arguments to be rendered within the <fieldset>

css_class
[str, optional] Additional CSS classes to be applied to the <input>. By default None.

css_id
[str, optional] A custom DOM id for the layout object. If not provided the name argument is
slugified and turned into the id for the submit button. By default None.

template
[str, optional] Overrides the default template, if provided. By default None.

**kwargs
[dict, optional] Additional attributes are passed to flatatt and converted into key=”value”,
pairs. These attributes are added to the <fieldset>.

2.2. API Layout 45

django-crispy-forms Documentation, Release 2.0

Examples

The Fieldset Layout object is added to your Layout for example:

Fieldset("Text for the legend",
"form_field_1",
"form_field_2",
css_id="my-fieldset-id",
css_class="my-fieldset-class",
data="my-data"

)

The above layout will be rendered as:

'''
<fieldset id="fieldset-id" class="my-fieldset-class" data="my-data">
<legend>Text for the legend</legend>
form fields render here

</fieldset>
'''

The first parameter is the text for the fieldset legend. This text is context aware, so you can do things like:

Fieldset("Data for {{ user.username }}",
'form_field_1',
'form_field_2'

)

class layout.HTML(html)
Layout object. It can contain pure HTML and it has access to the whole context of the page where the form is
being rendered.

Examples:

HTML("{% if saved %}Data saved{% endif %}")
HTML('<input type="hidden" name="{{ step_field }}" value="{{ step0 }}" />')

class layout.Hidden(name, value, *, css_id=None, css_class=None, template=None, **kwargs)
Used to create a Hidden input descriptor for the {% crispy %} template tag.

Parameters
name

[str] The name attribute of the button.

value
[str] The value attribute of the button.

css_id
[str, optional] A custom DOM id for the layout object. If not provided the name argument is
slugified and turned into the id for the submit button. By default None.

css_class
[str, optional] Additional CSS classes to be applied to the <input>. By default None.

template
[str, optional] Overrides the default template, if provided. By default None.

46 Chapter 2. API documentation

django-crispy-forms Documentation, Release 2.0

**kwargs
[dict, optional] Additional attributes are passed to flatatt and converted into key=”value”,
pairs. These attributes are added to the <input>.

Examples

Note: form arg to render() is not required for BaseInput inherited objects.

>>> hidden = Hidden("hidden", "hide-me")
>>> hidden.render("", "", Context())
'<input type="hidden" name="hidden" value="hide-me"/>'

Usually you will not call the render method on the object directly. Instead add it to your Layout manually or use
the add_input method:

class ExampleForm(forms.Form):
[...]
def __init__(self, *args, **kwargs):

super().__init__(*args, **kwargs)
self.helper = FormHelper()
self.helper.add_input(Hidden("hidden", "hide-me"))

Attributes
template: str

The default template which this Layout Object will be rendered with.

field_classes: str
CSS classes to be applied to the <input>.

input_type: str
The type attribute of the <input>.

class layout.Layout(*fields)
Form Layout. It is conformed by Layout objects: Fieldset, Row, Column, MultiField, HTML, ButtonHolder,
Button, Hidden, Reset, Submit and fields. Form fields have to be strings. Layout objects Fieldset, Row, Column,
MultiField and ButtonHolder can hold other Layout objects within. Though ButtonHolder should only hold
HTML and BaseInput inherited classes: Button, Hidden, Reset and Submit.

Example:

helper.layout = Layout(
Fieldset('Company data',

'is_company'
),
Fieldset(_('Contact details'),

'email',
Row('password1', 'password2'),
'first_name',
'last_name',
HTML(''),
'company'

),
ButtonHolder(

(continues on next page)

2.2. API Layout 47

django-crispy-forms Documentation, Release 2.0

(continued from previous page)

Submit('Save', 'Save', css_class='button white'),
),

)

class layout.MultiField(label, *fields, label_class=None, help_text=None, css_class=None, css_id=None,
template=None, field_template=None, **kwargs)

MultiField container for Bootstrap3. Renders to a MultiField <div>.

Parameters
label: str

The label for the multifield.

*fields: str
The fields to be rendered within the multifield.

label_class: str, optional
CSS classes to be added to the multifield label. By default None.

help_text: str, optional
Help text will be available in the context of the multifield template. This is unused in the
bootstrap3 template provided. By default None.

css_class
[str, optional] Additional CSS classes to be applied to the <input>. By default None.

css_id
[str, optional] A DOM id for the layout object which will be added to the wrapping <div> if
provided. By default None.

template
[str, optional] Overrides the default template, if provided. By default None.

field_template
[str, optional] Overrides the default template, if provided. By default None.

**kwargs
[dict, optional] Additional attributes are passed to flatatt and converted into key=”value”,
pairs. These attributes are added to the wrapping <div>.

Attributes
template: str

The default template which this Layout Object will be rendered with.

field_template: str
The template which fields will be rendered with.

class layout.MultiWidgetField(*fields, attrs=None, template=None, wrapper_class=None)
Layout object. For fields with MultiWidget as widget, you can pass additional attributes to each widget.

Parameters
*fields

[str] Usually a single field, but can be any number of fields, to be rendered with the same
attributes applied.

attrs
[str, optional] Additional attrs to be added to each widget. These are added to any classes
included in the attrs dict. By default None.

48 Chapter 2. API documentation

django-crispy-forms Documentation, Release 2.0

wrapper_class: str, optional
CSS classes to be used when rendering the Field. This class is usually applied to the <div>
which wraps the Field’s <label> and <input> tags. By default None.

template
[str, optional] Overrides the default template, if provided. By default None.

Examples

Example:

MultiWidgetField(
'multiwidget_field_name',
attrs=(

{'style': 'width: 30px;'},
{'class': 'second_widget_class'}

),
)

Attributes
template

[str] The default template which this Layout Object will be rendered with.

class layout.Pointer(positions: List[int], name: str)

class layout.Reset(name, value, *, css_id=None, css_class=None, template=None, **kwargs)
Used to create a reset button descriptor for the {% crispy %} template tag.

Parameters
name

[str] The name attribute of the button.

value
[str] The value attribute of the button.

css_id
[str, optional] A custom DOM id for the layout object. If not provided the name argument is
slugified and turned into the id for the submit button. By default None.

css_class
[str, optional] Additional CSS classes to be applied to the <input>. By default None.

template
[str, optional] Overrides the default template, if provided. By default None.

**kwargs
[dict, optional] Additional attributes are passed to flatatt and converted into key=”value”,
pairs. These attributes are added to the <input>.

2.2. API Layout 49

django-crispy-forms Documentation, Release 2.0

Examples

Note: form arg to render() is not required for BaseInput inherited objects.

>>> reset = Reset('Reset This Form', 'Revert Me!')
>>> reset.render("", "", Context())
'<input type="reset" name="reset-this-form" value="Revert Me!" '
'class="btn btn-inverse" id="reset-id-reset-this-form"/>'

>>> reset = Reset('Reset This Form', 'Revert Me!', css_id="custom-id",
css_class="custom class", my_attr=True, data="my-data")

>>> reset.render("", "", Context())
'<input type="reset" name="reset-this-form" value="Revert Me!" '
'class="btn btn-inverse custom class" id="custom-id" data="my-data" my-attr/>'

Usually you will not call the render method on the object directly. Instead add it to your Layout manually
manually or use the add_input method:

class ExampleForm(forms.Form):
[...]
def __init__(self, *args, **kwargs):

super().__init__(*args, **kwargs)
self.helper = FormHelper()
self.helper.add_input(Reset('Reset This Form', 'Revert Me!'))

Attributes
template: str

The default template which this Layout Object will be rendered with.

field_classes: str
CSS classes to be applied to the <input>.

input_type: str
The type attribute of the <input>.

class layout.Row(*fields, css_id=None, css_class=None, template=None, **kwargs)
Layout object. It wraps fields in a <div> and the template adds the appropriate class to render the contents in a
row. e.g. form-row when using the Bootstrap4 template pack.

Parameters
*fields

[str, LayoutObject] Any number of fields as positional arguments to be rendered within the
<div>.

css_id
[str, optional] A DOM id for the layout object which will be added to the <div> if provided.
By default None.

css_class
[str, optional] Additional CSS classes to be applied in addition to those declared by the class
itself. By default None.

template
[str, optional] Overrides the default template, if provided. By default None.

50 Chapter 2. API documentation

django-crispy-forms Documentation, Release 2.0

**kwargs
[dict, optional] Additional attributes are passed to flatatt and converted into key=”value”,
pairs. These attributes are added to the <div>.

Examples

In your Layout you can:

Row('form_field_1', 'form_field_2', css_id='row-example')

It is also possible to nest Layout Objects within a Row:

Row(
Div(

Field('form_field', css_class='field-class'),
css_class='div-class',

),
Div('form_field_2', css_class='div-class'),

)

Attributes
template

[str] The default template which this Layout Object will be rendered with.

css_class
[str, optional] CSS classes to be applied to the <div>. By default None.

class layout.Submit(name, value, *, css_id=None, css_class=None, template=None, **kwargs)
Used to create a Submit button descriptor for the {% crispy %} template tag.

Parameters
name

[str] The name attribute of the button.

value
[str] The value attribute of the button.

css_id
[str, optional] A custom DOM id for the layout object. If not provided the name argument is
slugified and turned into the id for the submit button. By default None.

css_class
[str, optional] Additional CSS classes to be applied to the <input>. By default None.

template
[str, optional] Overrides the default template, if provided. By default None.

**kwargs
[dict, optional] Additional attributes are passed to flatatt and converted into key=”value”,
pairs. These attributes are added to the <input>.

2.2. API Layout 51

django-crispy-forms Documentation, Release 2.0

Examples

Note: form arg to render() is not required for BaseInput inherited objects.

>>> submit = Submit('Search the Site', 'search this site')
>>> submit.render("", "", Context())
'<input type="submit" name="search-the-site" value="search this site" '
'class="btn btn-primary" id="submit-id-search-the-site"/>'

>>> submit = Submit('Search the Site', 'search this site', css_id="custom-id",
css_class="custom class", my_attr=True, data="my-data")

>>> submit.render("", "", Context())
'<input type="submit" name="search-the-site" value="search this site" '
'class="btn btn-primary custom class" id="custom-id" data="my-data" my-attr/>'

Usually you will not call the render method on the object directly. Instead add it to your Layout manually or use
the add_input method:

class ExampleForm(forms.Form):
[...]
def __init__(self, *args, **kwargs):

super().__init__(*args, **kwargs)
self.helper = FormHelper()
self.helper.add_input(Submit('submit', 'Submit'))

Attributes
template: str

The default template which this Layout Object will be rendered with.

field_classes: str
CSS classes to be applied to the <input>.

input_type: str
The type attribute of the <input>.

2.3 API templatetags

class templatetags.crispy_forms_tags.BasicNode(form, helper, template_pack=None)
Basic Node object that we can rely on for Node objects in normal template tags. I created this because most of
the tags we’ll be using will need both the form object and the helper string. This handles both the form object
and parses out the helper string into attributes that templates can easily handle.

get_render(context)
Returns a Context object with all the necessary stuff for rendering the form

Parameters
context – django.template.Context variable holding the context for the node

self.form and self.helper are resolved into real Python objects resolving them from the context. The ac-
tual_form can be a form or a formset. If it’s a formset is_formset is set to True. If the helper has a layout
we use it, for rendering the form or the formset’s forms.

52 Chapter 2. API documentation

django-crispy-forms Documentation, Release 2.0

get_response_dict(helper, context, is_formset)
Returns a dictionary with all the parameters necessary to render the form/formset in a template.

Parameters
• context – django.template.Context for the node

• is_formset – Boolean value. If set to True, indicates we are working with a formset.

class templatetags.crispy_forms_tags.CrispyFormNode(form, helper, template_pack=None)

render(context)
Return the node rendered as a string.

class templatetags.crispy_forms_tags.ForLoopSimulator(formset)
Simulates a forloop tag, precisely:

{% for form in formset.forms %}

If {% crispy %} is rendering a formset with a helper, We inject a ForLoopSimulator object in the context as
forloop so that formset forms can do things like:

Fieldset("Item {{ forloop.counter }}", [...])
HTML("{% if forloop.first %}First form text{% endif %}"

iterate()

Updates values as if we had iterated over the for

templatetags.crispy_forms_tags.do_uni_form(parser, token)
You need to pass in at least the form/formset object, and can also pass in the optional
crispy_forms.helpers.FormHelper object.

helper (optional): A crispy_forms.helper.FormHelper object.

Usage:

{% load crispy_tags %}
{% crispy form form.helper %}

You can also provide the template pack as the third argument:

{% crispy form form.helper 'bootstrap' %}

If the FormHelper attribute is named helper you can simply do:

{% crispy form %}
{% crispy form 'bootstrap' %}

templatetags.crispy_forms_tags.whole_uni_form_template(template_pack=<SimpleLazyObject:
<function get_template_pack>>)

templatetags.crispy_forms_tags.whole_uni_formset_template(template_pack=<SimpleLazyObject:
<function get_template_pack>>)

templatetags.crispy_forms_filters.as_crispy_errors(form, template_pack=<SimpleLazyObject:
<function get_template_pack>>)

Renders only form errors the same way as django-crispy-forms:

2.3. API templatetags 53

django-crispy-forms Documentation, Release 2.0

{% load crispy_forms_tags %}
{{ form|as_crispy_errors }}

or:

{{ form|as_crispy_errors:"bootstrap4" }}

templatetags.crispy_forms_filters.as_crispy_field(field, template_pack=<SimpleLazyObject:
<function get_template_pack>>, label_class='',
field_class='')

Renders a form field like a django-crispy-forms field:

{% load crispy_forms_tags %}
{{ form.field|as_crispy_field }}

or:

{{ form.field|as_crispy_field:"bootstrap4" }}

templatetags.crispy_forms_filters.as_crispy_form(form, template_pack=<SimpleLazyObject:
<function get_template_pack>>, label_class='',
field_class='')

The original and still very useful way to generate a div elegant form/formset:

{% load crispy_forms_tags %}

<form class="my-class" method="post">
{% csrf_token %}
{{ myform|crispy }}

</form>

or, if you want to explicitly set the template pack:

{{ myform|crispy:"bootstrap4" }}

In bootstrap3 or bootstrap4 for horizontal forms you can do:

{{ myform|label_class:"col-lg-2",field_class:"col-lg-8" }}

templatetags.crispy_forms_filters.flatatt_filter(attrs)

templatetags.crispy_forms_filters.optgroups(field)
A template filter to help rendering of fields with optgroups.

Returns:
A tuple of label, option, index

label: Group label for grouped optgroups (None if inputs are not
grouped).

option: A dict containing information to render the option:

{
"name": "checkbox_select_multiple",
"value": 1,

(continues on next page)

54 Chapter 2. API documentation

django-crispy-forms Documentation, Release 2.0

(continued from previous page)

"label": 1,
"selected": False,
"index": "0",
"attrs": {"id": "id_checkbox_select_multiple_0"},
"type": "checkbox",
"template_name": "django/forms/widgets/checkbox_option.html",
"wrap_label": True,

}

index: Group index

templatetags.crispy_forms_filters.uni_form_template(template_pack=<SimpleLazyObject: <function
get_template_pack>>)

templatetags.crispy_forms_filters.uni_formset_template(template_pack=<SimpleLazyObject:
<function get_template_pack>>)

class templatetags.crispy_forms_field.CrispyFieldNode(field, attrs)

render(context)
Return the node rendered as a string.

templatetags.crispy_forms_field.classes(field)
Returns CSS classes of a field

templatetags.crispy_forms_field.crispy_addon(field, append='', prepend='', form_show_labels=True)
Renders a form field using bootstrap’s prepended or appended text:

{% crispy_addon form.my_field prepend="$" append=".00" %}

You can also just prepend or append like so

{% crispy_addon form.my_field prepend=”$” %} {% crispy_addon form.my_field append=”.00” %}

templatetags.crispy_forms_field.crispy_field(parser, token)
{% crispy_field field attrs %}

templatetags.crispy_forms_field.css_class(field)
Returns widgets class name in lowercase

templatetags.crispy_forms_field.is_checkbox(field)

templatetags.crispy_forms_field.is_checkboxselectmultiple(field)

templatetags.crispy_forms_field.is_clearable_file(field)

templatetags.crispy_forms_field.is_file(field)

templatetags.crispy_forms_field.is_multivalue(field)

templatetags.crispy_forms_field.is_password(field)

templatetags.crispy_forms_field.is_radioselect(field)

templatetags.crispy_forms_field.is_select(field)

templatetags.crispy_forms_field.pairwise(iterable)
s -> (s0,s1), (s2,s3), (s4, s5), . . .

2.3. API templatetags 55

django-crispy-forms Documentation, Release 2.0

2.4 API Bootstrap

class crispy_forms.bootstrap.Accordion(*accordion_groups, css_id=None, css_class=None,
template=None, **kwargs)

Accordion menu object. It wraps AccordionGroup objects in a container

Parameters
*accordion_groups

[str, LayoutObject] Any number of layout objects as positional arguments to be rendered
within the <div>.

css_id
[str, optional] A DOM id for the layout object which will be added to the <div> if provided.
By default None.

css_class
[str, optional] Additional CSS classes to be applied in addition to those declared by the class
itself. By default None.

template
[str, optional] Overrides the default template, if provided. By default None.

**kwargs
[dict, optional] Additional attributes are passed to flatatt and converted into key=”value”,
pairs. These attributes are added to the <div>.

Examples

Example:

Accordion(
AccordionGroup("group name", "form_field_1", "form_field_2"),
AccordionGroup("another group name", "form_field")

)

Attributes
template

[str] The default template which this Layout Object will be rendered with.

css_class
[str, optional] CSS classes to be applied to the <div>. By default None.

class crispy_forms.bootstrap.AccordionGroup(name, *fields, css_id=None, css_class=None,
template=None, active=None, **kwargs)

Accordion Group (pane) object. It wraps given fields inside an accordion tab. It takes accordion tab name as
first argument.

Tab object. It wraps fields in a div whose default class is “tab-pane” and takes a name as first argument.

Parameters
name

[str] The name of the container.

56 Chapter 2. API documentation

django-crispy-forms Documentation, Release 2.0

*fields
[str, LayoutObject] Any number of fields as positional arguments to be rendered within the
container.

css_id
[str, optional] A DOM id for the layout object which will be added to the <div> if provided.
By default None.

css_class
[str, optional] Additional CSS classes to be applied in addition to those declared by the class
itself. By default None.

template
[str, optional] Overrides the default template, if provided. By default None.

**kwargs
[dict, optional] Additional attributes are passed to flatatt and converted into key=”value”,
pairs. These attributes are added to the <div>.

Examples

Example:

AccordionGroup("group name", "form_field_1", "form_field_2")

Attributes
template

[str] The default template which this Layout Object will be rendered with.

css_class
[str, optional] CSS classes to be applied to the <div>. By default “”.

class crispy_forms.bootstrap.Alert(content, dismiss=True, block=False, css_id=None, css_class=None,
template=None, **kwargs)

Generates markup in the form of an alert dialog.

Parameters
content

[str] The content of the alert.

dismiss
[bool] If true the alert contains a button to dismiss the alert. By default True.

block
[str, optional] Additional CSS classes to be applied to the <button>. By default None.

css_id
[str, optional] A DOM id for the layout object which will be added to the alert if provided.
By default None.

css_class
[str, optional] Additional CSS classes to be applied in addition to those declared by the class
itself. By default None.

template
[str, optional] Overrides the default template, if provided. By default None.

2.4. API Bootstrap 57

django-crispy-forms Documentation, Release 2.0

**kwargs
[dict, optional] Additional attributes are passed to flatatt and converted into key=”value”,
pairs. These attributes are then available in the template context.

Examples

Example:

Alert(content='Warning! Best check yo self, you're not looking too␣
→˓good.')

Attributes
template: str

The default template which this Layout Object will be rendered with.

css_class
[str] The CSS classes to be applied to the alert. By defult “alert”.

class crispy_forms.bootstrap.AppendedText(field, text, *, input_size=None, active=False, css_class=None,
wrapper_class=None, template=None, **kwargs)

Layout object for rendering a field with appended text.

Parameters
field

[str] The name of the field to be rendered.

text
[str] The appended text, can be HTML like.

input_size
[str, optional] For Bootstrap4+ additional classes to customise the input-group size e.g.
input-group-sm. By default None

active
[bool] For Bootstrap3, a boolean to render the text active. By default False.

css_class
[str, optional] CSS classes to be applied to the field. These are added to any classes included
in the attrs dict. By default None.

wrapper_class: str, optional
CSS classes to be used when rendering the Field. This class is usually applied to the <div>
which wraps the Field’s <label> and <input> tags. By default None.

template
[str, optional] Overrides the default template, if provided. By default None.

**kwargs
[dict, optional] Additional attributes are converted into key=”value”, pairs. These attributes
are added to the <div>.

58 Chapter 2. API documentation

django-crispy-forms Documentation, Release 2.0

Examples

Example:

AppendedText('amount', '.00')

Attributes
template

[str] The default template which this Layout Object will be rendered with.

attrs
[dict] Attributes to be applied to the field. These are converted into html attributes. e.g.
data_id: 'test' in the attrs dict will become data-id='test' on the field’s <input>.

class crispy_forms.bootstrap.Container(name, *fields, css_id=None, css_class=None, template=None,
active=None, **kwargs)

Base class used for Tab and AccordionGroup, represents a basic container concept.

Parameters
name

[str] The name of the container.

*fields
[str, LayoutObject] Any number of fields as positional arguments to be rendered within the
container.

css_id
[str, optional] A DOM id for the layout object which will be added to the <div> if provided.
By default None.

css_class
[str, optional] Additional CSS classes to be applied in addition to those declared by the class
itself. By default None.

template
[str, optional] Overrides the default template, if provided. By default None.

**kwargs
[dict, optional] Additional attributes are passed to flatatt and converted into key=”value”,
pairs. These attributes are added to the <div>.

Attributes
template

[str] The default template which this Layout Object will be rendered with.

css_class
[str, optional] CSS classes to be applied to the <div>. By default “”.

class crispy_forms.bootstrap.ContainerHolder(*fields, css_id=None, css_class=None, template=None,
**kwargs)

Base class used for TabHolder and Accordion, groups containers.

Parameters
*fields

[str, LayoutObject] Any number of fields or layout objects as positional arguments to be
rendered within the <div>.

2.4. API Bootstrap 59

django-crispy-forms Documentation, Release 2.0

css_id
[str, optional] A DOM id for the layout object which will be added to the <div> if provided.
By default None.

css_class
[str, optional] Additional CSS classes to be applied in addition to those declared by the class
itself. By default None.

template
[str, optional] Overrides the default template, if provided. By default None.

**kwargs
[dict, optional] Additional attributes are passed to flatatt and converted into key=”value”,
pairs. These attributes are added to the <div>.

Attributes
template

[str] The default template which this Layout Object will be rendered with.

css_class
[str, optional] CSS classes to be applied to the <div>. By default None.

first_container_with_errors(errors)
Returns the first container with errors, otherwise returns None.

open_target_group_for_form(form)

Makes sure that the first group that should be open is open. This is either the first group with errors or the
first group in the container, unless that first group was originally set to active=False.

class crispy_forms.bootstrap.FieldWithButtons(*fields, input_size=None, css_id=None,
css_class=None, template=None, **kwargs)

A layout object for rendering a single field with any number of buttons.

Parameters
*fields

[str or LayoutObject] The first positional argument is the field. This can be either the name of
the field as a string or an instance of Field. Following arguments will be rendered as buttons.

input_size
[str] Additional CSS class to change the size of the input. e.g. “input-group-sm”.

css_id
[str, optional] A DOM id for the layout object which will be added to the wrapping <div> if
provided. By default None.

css_class
[str, optional] Additional CSS classes to be applied in addition to those declared by the class
itself. By default None.

template
[str, optional] Overrides the default template, if provided. By default None.

**kwargs
[dict, optional] Additional attributes are passed to flatatt and converted into key=”value”,
pairs. These attributes are added to the wrapping <div>.

60 Chapter 2. API documentation

django-crispy-forms Documentation, Release 2.0

Examples

Example:

FieldWithButtons(
Field("password1", css_class="span4"),
StrictButton("Go!", css_id="go-button"),
input_size="input-group-sm",

)

Attributes
template

[str] The default template which this Layout Object will be rendered with.

css_class
[str, optional] CSS classes to be applied to the wrapping <div>. By default None.

class crispy_forms.bootstrap.FormActions(*fields, css_id=None, css_class=None, template=None,
**kwargs)

Bootstrap layout object. It wraps fields in a <div class=”form-actions”>

Parameters
*fields

[HTML or BaseInput] The layout objects to render within the ButtonHolder. It should only
hold HTML and BaseInput inherited objects.

css_id
[str, optional] A custom DOM id for the layout object which will be added to the <div> if
provided. By default None.

css_class
[str, optional] Additional CSS classes to be applied to the <div>. By default None.

template
[str, optional] Overrides the default template, if provided. By default None.

**kwargs
[dict, optional] Additional attributes are passed to flatatt and converted into key=”value”,
pairs. These attributes are added to the <div>.

Examples

An example using FormActions in your layout:

FormActions(
HTML(Information Saved),
Submit('Save', 'Save', css_class='btn-primary')

)

Attributes
template: str

The default template which this Layout Object will be rendered with.

2.4. API Bootstrap 61

django-crispy-forms Documentation, Release 2.0

class crispy_forms.bootstrap.InlineCheckboxes(*fields, css_class=None, wrapper_class=None,
template=None, **kwargs)

Layout object for rendering checkboxes inline.

Parameters
*fields

[str] Usually a single field, but can be any number of fields, to be rendered with the same
attributes applied.

css_class
[str, optional] CSS classes to be applied to the field. These are added to any classes included
in the attrs dict. By default None.

wrapper_class: str, optional
CSS classes to be used when rendering the Field. This class is usually applied to the <div>
which wraps the Field’s <label> and <input> tags. By default None.

template
[str, optional] Overrides the default template, if provided. By default None.

**kwargs
[dict, optional] Additional attributes are converted into key=”value”, pairs. These attributes
are added to the <div>.

Examples

Example:

InlineCheckboxes('field_name')

Attributes
template

[str] The default template which this Layout Object will be rendered with.

attrs
[dict] Attributes to be applied to the field. These are converted into html attributes. e.g.
data_id: 'test' in the attrs dict will become data-id='test' on the field’s <input>.

class crispy_forms.bootstrap.InlineField(*fields, css_class=None, wrapper_class=None,
template=None, **kwargs)

Layout object for rendering fields as Inline in bootstrap.

Parameters
*fields

[str] Usually a single field, but can be any number of fields, to be rendered with the same
attributes applied.

css_class
[str, optional] CSS classes to be applied to the field. These are added to any classes included
in the attrs dict. By default None.

wrapper_class: str, optional
CSS classes to be used when rendering the Field. This class is usually applied to the <div>
which wraps the Field’s <label> and <input> tags. By default None.

62 Chapter 2. API documentation

django-crispy-forms Documentation, Release 2.0

template
[str, optional] Overrides the default template, if provided. By default None.

**kwargs
[dict, optional] Additional attributes are converted into key=”value”, pairs. These attributes
are added to the <div>.

Examples

Example:

InlineField('field_name')

Attributes
template

[str] The default template which this Layout Object will be rendered with.

attrs
[dict] Attributes to be applied to the field. These are converted into html attributes. e.g.
data_id: 'test' in the attrs dict will become data-id='test' on the field’s <input>.

class crispy_forms.bootstrap.InlineRadios(*fields, css_class=None, wrapper_class=None,
template=None, **kwargs)

Layout object for rendering radiobuttons inline.

Parameters
*fields

[str] Usually a single field, but can be any number of fields, to be rendered with the same
attributes applied.

css_class
[str, optional] CSS classes to be applied to the field. These are added to any classes included
in the attrs dict. By default None.

wrapper_class: str, optional
CSS classes to be used when rendering the Field. This class is usually applied to the <div>
which wraps the Field’s <label> and <input> tags. By default None.

template
[str, optional] Overrides the default template, if provided. By default None.

**kwargs
[dict, optional] Additional attributes are converted into key=”value”, pairs. These attributes
are added to the <div>.

2.4. API Bootstrap 63

django-crispy-forms Documentation, Release 2.0

Examples

Example:

InlineRadios('field_name')

Attributes
template

[str] The default template which this Layout Object will be rendered with.

attrs
[dict] Attributes to be applied to the field. These are converted into html attributes. e.g.
data_id: 'test' in the attrs dict will become data-id='test' on the field’s <input>.

class crispy_forms.bootstrap.Modal(*fields, template=None, css_id='modal_id', title='Modal Title',
title_id='modal_title_id', css_class=None, title_class=None,
**kwargs)

Boostrap layout object for rendering crispy forms objects inside a bootstrap modal.

Parameters
*fields

[str] The fields to be rendered within the modal.

template
[str, optional] Overrides the default template, if provided. By default None.

css_id: str, optional
The modal’s DOM id. By default modal_id.

title: str, optional
Text to display in the modal’s header which will be wrapped in an <H5> tag. By default
Modal Title.

title_id: str, optional
The title’s DOM id. By default modal_title_id.

css_class
[str, optional] CSS classes to be applied to the field. These are added to any classes included
in the attrs dict. By default None.

title_class: str, optional
Additional CSS classes to be applied to the title. By default None.

**kwargs
[dict, optional] Additional attributes are converted into key=”value”, pairs. These attributes
are added to the <div>.

64 Chapter 2. API documentation

django-crispy-forms Documentation, Release 2.0

Examples

Example:

Modal(
'field1',
Div('field2'),
css_id="modal-id-ex",
css_class="modal-class-ex,
title="This is my modal",

)

Attributes
template

[str] The default template which this Layout Object will be rendered with.

class crispy_forms.bootstrap.PrependedAppendedText(field, prepended_text=None,
appended_text=None, input_size=None, *,
active=False, css_class=None,
wrapper_class=None, template=None, **kwargs)

Layout object for rendering a field with prepended and appended text.

Parameters
field

[str] The name of the field to be rendered.

prepended_text
[str, optional] The prepended text, can be HTML like, by default None

appended_text
[str, optional] The appended text, can be HTML like, by default None

input_size
[str, optional] For Bootstrap4+ additional classes to customise the input-group size e.g.
input-group-sm. By default None

active
[bool] For Bootstrap3, a boolean to render the text active. By default False.

css_class
[str, optional] CSS classes to be applied to the field. These are added to any classes included
in the attrs dict. By default None.

wrapper_class: str, optional
CSS classes to be used when rendering the Field. This class is usually applied to the <div>
which wraps the Field’s <label> and <input> tags. By default None.

template
[str, optional] Overrides the default template, if provided. By default None.

**kwargs
[dict, optional] Additional attributes are converted into key=”value”, pairs. These attributes
are added to the <div>.

2.4. API Bootstrap 65

django-crispy-forms Documentation, Release 2.0

Examples

Example:

PrependedAppendedText('amount', '$', '.00')

Attributes
template

[str] The default template which this Layout Object will be rendered with.

attrs
[dict] Attributes to be applied to the field. These are converted into html attributes. e.g.
data_id: 'test' in the attrs dict will become data-id='test' on the field’s <input>.

class crispy_forms.bootstrap.PrependedText(field, text, *, input_size=None, active=False,
css_class=None, wrapper_class=None, template=None,
**kwargs)

Layout object for rendering a field with prepended text.

Parameters
field

[str] The name of the field to be rendered.

text
[str] The prepended text, can be HTML like.

input_size
[str, optional] For Bootstrap4+ additional classes to customise the input-group size e.g.
input-group-sm. By default None

active
[bool] For Bootstrap3, a boolean to render the text active. By default False.

css_class
[str, optional] CSS classes to be applied to the field. These are added to any classes included
in the attrs dict. By default None.

wrapper_class: str, optional
CSS classes to be used when rendering the Field. This class is usually applied to the <div>
which wraps the Field’s <label> and <input> tags. By default None.

template
[str, optional] Overrides the default template, if provided. By default None.

**kwargs
[dict, optional] Additional attributes are converted into key=”value”, pairs. These attributes
are added to the <div>.

66 Chapter 2. API documentation

django-crispy-forms Documentation, Release 2.0

Examples

Example:

PrependedText('amount', '$')

Attributes
template

[str] The default template which this Layout Object will be rendered with.

attrs
[dict] Attributes to be applied to the field. These are converted into html attributes. e.g.
data_id: 'test' in the attrs dict will become data-id='test' on the field’s <input>.

class crispy_forms.bootstrap.StrictButton(content, css_id=None, css_class=None, template=None,
**kwargs)

Layout object for rendering an HTML button in a <button> tag.

Parameters
content

[str] The content of the button. This content is context aware, to bring this to life see the
examples section.

css_id
[str, optional] A custom DOM id for the layout object which will be added to the <button>
if provided. By default None.

css_class
[str, optional] Additional CSS classes to be applied to the <button>. By default None.

template
[str, optional] Overrides the default template, if provided. By default None.

**kwargs
[dict, optional] Additional attributes are passed to flatatt and converted into key=”value”,
pairs. These attributes are added to the <button>.

Examples

In your Layout:

StrictButton("button content", css_class="extra")

The content of the button is context aware, so you can do things like:

StrictButton("Button for {{ user.username }}")

Attributes
template: str

The default template which this Layout Object will be rendered with.

field_classes
[str] The CSS classes to be applied to the button. By defult “btn”.

2.4. API Bootstrap 67

django-crispy-forms Documentation, Release 2.0

class crispy_forms.bootstrap.Tab(name, *fields, css_id=None, css_class=None, template=None,
active=None, **kwargs)

Tab object. It wraps fields in a div whose default class is “tab-pane” and takes a name as first argument.

Parameters
name

[str] The name of the container.

*fields
[str, LayoutObject] Any number of fields as positional arguments to be rendered within the
container.

css_id
[str, optional] A DOM id for the layout object which will be added to the <div> if provided.
By default None.

css_class
[str, optional] Additional CSS classes to be applied in addition to those declared by the class
itself. By default None.

template
[str, optional] Overrides the default template, if provided. By default None.

**kwargs
[dict, optional] Additional attributes are passed to flatatt and converted into key=”value”,
pairs. These attributes are added to the <div>.

Examples

Example:

Tab('tab_name', 'form_field_1', 'form_field_2', 'form_field_3')

Attributes
template

[str] The default template which this Layout Object will be rendered with.

css_class
[str, optional] CSS classes to be applied to the <div>. By default “”.

render_link(template_pack=<SimpleLazyObject: <function get_template_pack>>, **kwargs)
Render the link for the tab-pane. It must be called after render so css_class is updated with active if needed.

class crispy_forms.bootstrap.TabHolder(*fields, css_id=None, css_class=None, template=None,
**kwargs)

TabHolder object. It wraps Tab objects in a container.

Parameters
*fields

[str, LayoutObject] Any number of fields or layout objects as positional arguments to be
rendered within the <div>.

css_id
[str, optional] A DOM id for the layout object which will be added to the <div> if provided.
By default None.

68 Chapter 2. API documentation

django-crispy-forms Documentation, Release 2.0

css_class
[str, optional] Additional CSS classes to be applied in addition to those declared by the class
itself. By default None.

template
[str, optional] Overrides the default template, if provided. By default None.

**kwargs
[dict, optional] Additional attributes are passed to flatatt and converted into key=”value”,
pairs. These attributes are added to the <div>.

Examples

Example:

TabHolder(
Tab('form_field_1', 'form_field_2'),
Tab('form_field_3')

)

Attributes
template

[str] The default template which this Layout Object will be rendered with.

css_class
[str, optional] CSS classes to be applied to the <div>. By default None.

class crispy_forms.bootstrap.UneditableField(field, css_class=None, wrapper_class=None,
template=None, **kwargs)

Layout object for rendering fields as uneditable in bootstrap.

Parameters
fields

[str] The name of the field.

css_class
[str, optional] CSS classes to be applied to the field. These are added to any classes included
in the attrs dict. By default None.

wrapper_class: str, optional
CSS classes to be used when rendering the Field. This class is usually applied to the <div>
which wraps the Field’s <label> and <input> tags. By default None.

template
[str, optional] Overrides the default template, if provided. By default None.

**kwargs
[dict, optional] Additional attributes are converted into key=”value”, pairs. These attributes
are added to the <div>.

2.4. API Bootstrap 69

django-crispy-forms Documentation, Release 2.0

Examples

Example:

UneditableField('field_name', css_class="input-xlarge")

Attributes
template

[str] The default template which this Layout Object will be rendered with.

attrs
[dict] Attributes to be applied to the field. These are converted into html attributes. e.g.
data_id: 'test' in the attrs dict will become data-id='test' on the field’s <input>.

70 Chapter 2. API documentation

CHAPTER

THREE

DEVELOPER GUIDE

Think this is awesome and want to make it better? Read our contribution page, make it better, and you will be added
to the contributors list!

3.1 Contributing

3.1.1 Setup

Fork on GitHub

Before you do anything else, login/signup on GitHub.com and fork django-crispy-forms from https://github.com/
django-crispy-forms/django-crispy-forms.

Clone your fork locally

If you have git-scm installed, you now clone your git repository using the following command-line argument where
<my-github-name> is your account name on GitHub:

git clone git@github.com/<my-github-name>/django-crispy-forms.git

Install requirements

Install dependencies for development by cd-ing into the crispy-forms folder and then running:

pip install -r requirements.txt

In addition to these requirements you will also need to install Django itself. To install the current version of Django:

pip install django

Django-crispy-forms comes with git hook scripts. These can be installed by running:

pre-commit install

Pre-commit will now run automatically on git-commit and check adherence to the style guide (black, isort & flake8).

71

https://github.com/django-crispy-forms/django-crispy-forms/blob/main/CONTRIBUTORS.txt
https://github.com/django-crispy-forms/django-crispy-forms
https://github.com/django-crispy-forms/django-crispy-forms

django-crispy-forms Documentation, Release 2.0

3.1.2 Build the documentation locally

If you make documentation changes they can be seen locally. In the directory where you cloned
django-crispy-forms:

cd docs
pip install -r requirements.txt
make html

You can open the file _build/html/index.html and verify the changes.

3.1.3 Setting up topic branches and generating pull requests

While it’s handy to provide useful code snippets in an issue, it is better for you as a developer to submit pull requests.
By submitting pull request your contribution to django-crispy-forms will be recorded by GitHub.

In git it is best to isolate each topic or feature into a “topic branch”. While individual commits allow you control over
how small individual changes are made to the code, branches are a great way to group a set of commits all related to
one feature together, or to isolate different efforts when you might be working on multiple topics at the same time.

While it takes some experience to get the right feel about how to break up commits, a topic branch must be limited in
scope to a single issue as submitted to an issue tracker.

Also since GitHub pegs and syncs a pull request to a specific branch, it is the ONLY way that you can submit more
than one fix at a time. If you submit a pull from your main branch, you can’t make any more commits to your main
branch without those getting added to the pull.

To create a topic branch, its easiest to use the convenient -b argument to git checkout:

git checkout -b fix-broken-thing
Switched to a new branch 'fix-broken-thing'

You should use a verbose enough name for your branch so it is clear what it is about. Now you can commit your changes
and regularly merge in the upstream main branch as described below.

When you are ready to generate a pull request, either for preliminary review, or for consideration of merging into the
project you must first push your local topic branch back up to GitHub:

git push origin fix-broken-thing

Now when you go to your fork on GitHub, you will see this branch listed under the “Source” tab where it says “Switch
Branches”. Go ahead and select your topic branch from this list, and then click the “Pull request” button.

Here you can add a comment about your branch. If this in response to a submitted issue, it is good to put a link to that
issue in this initial comment. The repo managers will be notified of your pull request and it will be reviewed (see below
for best practices). Note that you can continue to add commits to your topic branch (and push them up to GitHub) either
if you see something that needs changing, or in response to a reviewer’s comments. If a reviewer asks for changes, you
do not need to close the pull and reissue it after making changes. Just make the changes locally, push them to GitHub,
then add a comment to the discussion section of the pull request.

72 Chapter 3. Developer Guide

django-crispy-forms Documentation, Release 2.0

3.1.4 Pull upstream changes into your fork regularly

django-crispy-forms is worked on by a lot of people. It is therefore critical that you pull upstream changes from trunk
into your fork on a regular basis. Nothing is worse than putting in days of hard work into a pull request only to have it
rejected because it has diverged too far from trunk.

To pull in upstream changes:

git remote add trunk git://github.com/django-crispy-forms/django-crispy-forms.git
git fetch trunk

Check the log to be sure that you actually want the changes, before merging:

git log ..django-crispy-forms/main

Then merge the changes that you fetched:

git merge django-crispy-forms/main

For more info, see https://help.github.com/fork-a-repo/

3.1.5 How to get your Pull Request accepted

We want your submission. But we also want to provide a stable experience for our users and the community. Follow
these rules and you should succeed without a problem!

Run the tests!

Before you submit a pull request, please run the entire django-crispy-forms test suite via:

make test

If you don’t have make installed the test suite can also be run via:

pytest --ds=tests.test_settings --cov=crispy_forms

The first thing the core committers will do is run this command. Any pull request that fails this test suite will be
rejected.

It’s always good to add tests!

We’ve learned the hard way that code without tests is undependable. If your pull request comes with tests, it’s got a
greater chance to be included. Otherwise the lead will ask you to code them or will help you doing so.

We use the py.test.

Also, keep your tests as simple as possible. Complex tests end up requiring their own tests. We would rather see
duplicated assertions across test methods than cunning utility methods that magically determine which assertions are
needed at a particular stage. Remember: Explicit is better than implicit.

3.1. Contributing 73

https://help.github.com/fork-a-repo/

django-crispy-forms Documentation, Release 2.0

Don’t mix code changes with whitespace cleanup

If you change two lines of code and correct 200 lines of whitespace issues in a file the diff on that pull request is
functionally unreadable and will be rejected. Whitespace cleanups need to be in their own pull request.

Keep your pull requests limited to a single issue

django-crispy-forms pull requests should be as small/atomic as possible. Large, wide-sweeping changes in a pull request
will be rejected, with comments to isolate the specific code in your pull request. Some examples:

1. If you are fixing a bug in one helper class don’t ‘cleanup’ unrelated helpers. That cleanup belongs in another
pull request.

2. Changing permissions on a file should be in its own pull request with explicit reasons why.

Keep your code simple!

Memorize the Zen of Python:

>>> python -c 'import this'

Please keep your code as clean and straightforward as possible. When we see more than one or two functions/methods
starting with _my_special_function or things like __builtins__.object = str we start to get worried. Rather than try and
figure out your brilliant work we’ll just reject it and send along a request for simplification.

Furthermore, the pixel shortage is over. We want to see:

• helper instead of hpr

• django-crispy-forms instead of dcf

• my_function_that_does_things instead of mftdt

74 Chapter 3. Developer Guide

PYTHON MODULE INDEX

c
crispy_forms.bootstrap, 56

h
helper, 39

l
layout, 40

t
templatetags.crispy_forms_field, 55
templatetags.crispy_forms_filters, 53
templatetags.crispy_forms_tags, 52

75

django-crispy-forms Documentation, Release 2.0

76 Python Module Index

INDEX

A
Accordion (class in crispy_forms.bootstrap), 56
AccordionGroup (class in crispy_forms.bootstrap), 56
Alert (class in crispy_forms.bootstrap), 57
AppendedText (class in crispy_forms.bootstrap), 58
as_crispy_errors() (in module template-

tags.crispy_forms_filters), 53
as_crispy_field() (in module template-

tags.crispy_forms_filters), 54
as_crispy_form() (in module template-

tags.crispy_forms_filters), 54

B
BaseInput (class in layout), 40
BasicNode (class in templatetags.crispy_forms_tags), 52
Button (class in layout), 41
ButtonHolder (class in layout), 42

C
classes() (in module templatetags.crispy_forms_field),

55
Column (class in layout), 43
Container (class in crispy_forms.bootstrap), 59
ContainerHolder (class in crispy_forms.bootstrap), 59
crispy_addon() (in module template-

tags.crispy_forms_field), 55
crispy_field() (in module template-

tags.crispy_forms_field), 55
crispy_forms.bootstrap

module, 56
CrispyFieldNode (class in template-

tags.crispy_forms_field), 55
CrispyFormNode (class in template-

tags.crispy_forms_tags), 53
css_class() (in module template-

tags.crispy_forms_field), 55

D
Div (class in layout), 43
do_uni_form() (in module template-

tags.crispy_forms_tags), 53

F
Field (class in layout), 44
Fieldset (class in layout), 45
FieldWithButtons (class in crispy_forms.bootstrap),

60
first_container_with_errors()

(crispy_forms.bootstrap.ContainerHolder
method), 60

flatatt_filter() (in module template-
tags.crispy_forms_filters), 54

ForLoopSimulator (class in template-
tags.crispy_forms_tags), 53

FormActions (class in crispy_forms.bootstrap), 61
FormHelper (class in helper), 39

G
get_attributes() (helper.FormHelper method), 40
get_render() (template-

tags.crispy_forms_tags.BasicNode method),
52

get_response_dict() (template-
tags.crispy_forms_tags.BasicNode method),
52

H
helper

module, 39
Hidden (class in layout), 46
HTML (class in layout), 46

I
InlineCheckboxes (class in crispy_forms.bootstrap),

61
InlineField (class in crispy_forms.bootstrap), 62
InlineRadios (class in crispy_forms.bootstrap), 63
is_checkbox() (in module template-

tags.crispy_forms_field), 55
is_checkboxselectmultiple() (in module template-

tags.crispy_forms_field), 55
is_clearable_file() (in module template-

tags.crispy_forms_field), 55

77

django-crispy-forms Documentation, Release 2.0

is_file() (in module templatetags.crispy_forms_field),
55

is_multivalue() (in module template-
tags.crispy_forms_field), 55

is_password() (in module template-
tags.crispy_forms_field), 55

is_radioselect() (in module template-
tags.crispy_forms_field), 55

is_select() (in module template-
tags.crispy_forms_field), 55

iterate() (templatetags.crispy_forms_tags.ForLoopSimulator
method), 53

L
layout

module, 40
Layout (class in layout), 47

M
Modal (class in crispy_forms.bootstrap), 64
module

crispy_forms.bootstrap, 56
helper, 39
layout, 40
templatetags.crispy_forms_field, 55
templatetags.crispy_forms_filters, 53
templatetags.crispy_forms_tags, 52

MultiField (class in layout), 48
MultiWidgetField (class in layout), 48

O
open_target_group_for_form()

(crispy_forms.bootstrap.ContainerHolder
method), 60

optgroups() (in module template-
tags.crispy_forms_filters), 54

P
pairwise() (in module template-

tags.crispy_forms_field), 55
Pointer (class in layout), 49
PrependedAppendedText (class in

crispy_forms.bootstrap), 65
PrependedText (class in crispy_forms.bootstrap), 66

R
render() (layout.BaseInput method), 41
render() (templatetags.crispy_forms_field.CrispyFieldNode

method), 55
render() (templatetags.crispy_forms_tags.CrispyFormNode

method), 53
render_layout() (helper.FormHelper method), 40

render_link() (crispy_forms.bootstrap.Tab method),
68

Reset (class in layout), 49
Row (class in layout), 50

S
StrictButton (class in crispy_forms.bootstrap), 67
Submit (class in layout), 51

T
Tab (class in crispy_forms.bootstrap), 67
TabHolder (class in crispy_forms.bootstrap), 68
templatetags.crispy_forms_field

module, 55
templatetags.crispy_forms_filters

module, 53
templatetags.crispy_forms_tags

module, 52

U
UneditableField (class in crispy_forms.bootstrap), 69
uni_form_template() (in module template-

tags.crispy_forms_filters), 55
uni_formset_template() (in module template-

tags.crispy_forms_filters), 55

W
whole_uni_form_template() (in module template-

tags.crispy_forms_tags), 53
whole_uni_formset_template() (in module tem-

platetags.crispy_forms_tags), 53

78 Index

	User Guide
	Installation
	Installing django-crispy-forms
	Template packs
	Setting static files

	crispy filter
	Using {% crispy %} tag because it rocks

	{% crispy %} tag with forms
	Fundamentals
	Manipulating a helper in a view
	Rendering several forms with helpers
	Change ‘*’ required fields
	Make crispy-forms fail loud
	Change crispy-forms <input> default classes
	Render a form within Python code
	AJAX validation recipe
	Bootstrap horizontal forms
	Bootstrap inline forms

	FormHelper
	FormHelper with a form attached (Default layout)
	Helper attributes you can set
	Bootstrap Helper attributes
	Bootstrap 3 Helper attributes
	Bootstrap 4 Helper attributes
	Custom Helper attributes

	Layouts
	Fundamentals
	Layout objects attributes
	Universal layout objects
	Bootstrap Layout objects
	Input group size

	Overriding layout objects templates
	Overriding project templates
	Creating your own layout objects
	Composing layouts

	How to create your own template packs
	Fundamentals
	Starting

	{% crispy %} tag with formsets
	Formsets
	Extra context
	Custom templates and table inline formsets
	Formset forms with different layouts

	Updating layouts on the go
	Selecting layout objects with slices
	wrap
	wrap_together
	update_attributes
	all
	Selecting a field name
	filter
	filter_by_widget
	exclude_by_widget
	Manipulating a layout

	Frequently Asked Questions
	Technical
	Displaying columns in a bootstrap Layout
	Using a custom widget

	General
	Why use django-crispy-forms and not other app
	How did this all get started?
	How fast is django-crispy-forms
	Which versions of Python does this support?
	Which versions of Django does this support?

	API documentation
	API helpers
	API Layout
	API templatetags
	API Bootstrap

	Developer Guide
	Contributing
	Setup
	Fork on GitHub
	Clone your fork locally
	Install requirements

	Build the documentation locally
	Setting up topic branches and generating pull requests
	Pull upstream changes into your fork regularly
	How to get your Pull Request accepted
	Run the tests!
	It’s always good to add tests!
	Don’t mix code changes with whitespace cleanup
	Keep your pull requests limited to a single issue
	Keep your code simple!

	Python Module Index
	Index

